WU Binrong, WANG Lin. Research on Interpretable Tourism Demand Forecasting Based on JADE-TFT Model[J]. Operations Research and Management Science, 2024, 33(8): 148-154.
[1] HU F, TEICHERT T, DENG S, et al. Dealing with pandemics: An investigation of the effects of COVID-19 on customers’ evaluations of hospitality services[J]. Tourism Management, 2021, 85: 104320. [2] WICKRAMASINGHE K, RATNASIRI S. The role of disaggregated search data in improving tourism forecasts: Evidence from Sri Lanka[J]. Current Issues in Tourism, 2021, 24(19): 2740-2754. [3] LIU H, LIU W, WANG Y. A study on the influencing factors of tourism demand from mainland China to Hong Kong[J]. Journal of Hospitality & Tourism Research, 2021, 45(1): 171-191. [4] ZHANG H, SONG H, WEN L, et al. Forecasting tourism recovery amid COVID-19[J]. Annals of Tourism Research, 2021, 87: 103149. [5] LI X, LAW R, XIE G, et al. Review of tourism forecasting research with internet data[J]. Tourism Management, 2021, 83: 104245. [6] 梁昌勇,马银超,陈荣,等.基于SVR-ARMA组合模型的日旅游需求预测[J].管理工程学报,2015,29(1):122-127. [7] 李晓炫,吕本富,曾鹏志,等.基于网络搜索和CLSI-EMD-BP的旅游客流量预测研究[J].系统工程理论与实践,2017,37(1):106-118. [8] LIM B, ARIK SO, LOEFF N, et al. Temporal Fusion Transformers for interpretable multi-horizon time series forecasting[J]. International Journal of Forecasting, 2021, 37(4): 1748-1764. [9] LIU Y, YANG C, HUANG K, et al. Non-ferrous metals price forecasting based on variational mode decomposition and LSTM network[J]. Knowledge-Based Systems, 2020, 188: 105006. [10] 乔若羽.基于神经网络的股票预测模型[J].运筹与管理,2019,28(10):132-140. [11] 梁小珍,张晴,杨明歌.面向网络搜索数据的航空客运需求两阶段分解集成预测模型[J].管理评论,2021,33(5):236-245. [12] 熊涛,鲍玉昆.基于动态模型平均的大豆期货价格预测研究[J].中国管理科学,2020,28(5):79-88.