A Financial Risk Contagion Prediction Model Based on Graph Generative Network
LIANG Longyue1,2, WANG Haozhu3
1. School of Economics, Guizhou University, Guiyang 550025, China; 2. Research Center for the Development and Application of Marxist Economics, Guizhou University, Guiyang 550025, China; 3. School of Economics, Nankai University, Tianjin 300071, China
LIANG Longyue, WANG Haozhu. A Financial Risk Contagion Prediction Model Based on Graph Generative Network[J]. Operations Research and Management Science, 2025, 34(7): 133-139.
[1] 陈少凌,谭黎明,杨海生,等.我国金融行业的系统重要性研究—基于HD-TVP-VAR模型的复杂网络分析[J].系统工程理论与实践,2021,41(8):1911-1925. [2] 欧阳资生,路敏,周学伟.基于TVP-VAR-LSTM模型的中国金融业风险溢出与预警研究[J].统计与信息论坛,2022,37(10):53-64. [3] 范小云,王业东,王道平.基于新闻大数据与机器学习的中国银行业系统性风险研究[J].世界经济,2022,45(4):3-30. [4] 任英华,江劲风,倪青山.基于图神经网络模型的金融危机预警研究—全行业间信息溢出视角[J].统计研究,2022,39(8):141-160. [5] 王辉,朱家雲,陈旭.银行间市场网络稳定性与系统性金融风险最优应对策略:政府控股视角[J].经济研究,2021,56(11):100-118. [6] DIEBOLD F X, YILMAZ K. Better to give than to receive: Predictive directional measurement of volatility spillovers[J]. International Journal of Forecasting, 2012, 28(1): 57-66. [7] DIEBOLD F X, YILMAZ K. On the network topology of variance decompositions: Measuring the connectedness of financial firms[J]. Journal of Econometrics, 2014, 182(1): 119-134. [8] 杨子晖,陈雨恬,谢锐楷.我国金融机构系统性金融风险度量与跨部门风险溢出效应研究[J].金融研究,2018(10):19-37. [9] 宫晓莉,熊熊.波动溢出网络视角的金融风险传染研究[J].金融研究,2020(5):39-58. [10] ALEXANDRE M, SILVA T C, CONNAUGHTON C, et al. The drivers of systemic risk in financial networks: A data-driven machine learning analysis[J]. Chaos, Solitons & Fractals, 2021, 153: 111588. [11] LIU R, PUN C S. Machine-learning-enhanced systemic risk measure: A two-step supervised learning approach[J]. Journal of Banking & Finance, 2022, 136: 106416. [12] BALMASEDA V, CORONADO M, DE CADENAS-SANTIAGO G. Predicting systemic risk in financial systems using deep graph learning[J]. Intelligent Systems with Applications, 2023, 19: 200-240. [13] YANG C, ZHUANG P, SHI W, et al. Conditional structure generation through graph variational generative adversarial nets[J]. Advances in Neural Information Processing Systems, 2019, 32: 1340-1351. [14] 杨子晖,戴志颖.中国上下行风险的非对称溢出冲击研究—基于高频数据合成网络的分析[J].中国工业经济,2023(3):77-95. [15] FAEZ F, HASHEMI DIJUJIN N, SOLEYMANI BAGHSHAH M, et al. SCGG: A deep structure-conditioned graph generative model[J]. PloS One, 2022, 17(11): e0277887. [16] 杨子晖,陈里璇,陈雨恬.经济政策不确定性与系统性金融风险的跨市场传染—基于非线性网络关联的研究[J].经济研究,2020,55(1):65-81. [17] 余博,邹宇翔,管超.我国金融机构的系统风险重要性研究—基于Clayton Copula函数方法和MST网络模型[J].保险研究,2021(6):11-27.