[1] Saghafian S.Flowshop-scheduling problems with makes-pan criterion: a review [J]. International Journal of Production Research, 2005,43(14): 2895-2929. [2] Tasgetiren M F, Pan Q K, Wang L, et al.ADEbased variable iterated greedy algorithm for the no-idle permutation flowshop scheduling problem with total flowtime criterion[C]. International Conference on Advanced Intelligent Computing Theories and Applications: with. Aspects of Artificial Intelligence. 11-14 Aug 2011: 83-90. [3] 武磊,潘全科,桑红燕,潘玉霞.求解零空闲流水线调度问题的和声搜索算法[J].计算机集成制造系统,2009,15(10):1960-1967. [4] Shao W, Pi D, Shao Z.Memetic algorithm with node and edge histogram for no-idle flow shop scheduling problem to minimize the makespan criterion[J]. Applied Soft Computing, 2017, 54: 164-182. [5] 刘长平,叶春明.求解零空闲置换流水车间调度问题的离散萤火虫算法[J].系统管理学报,2014,23(05): 723-727. [6] Ying K C, Lin S W, Cheng C Y, et al.Iterated reference greedy algorithm for solving distributed no-idle permutation flowshop scheduling problems[J]. Computers & Industrial Engineering, 2017, 110: 413-423. [7] Sun Z, Gu X.Hybrid algorithm based on an estimation of distribution algorithm and cuckoo search for the no Idle permutation flow shop scheduling problem with the total tardiness criterion minimization [J]. Sustainability, 2017,9(6): 1-16. [8] Shao W, Pi D, Shao Z.A hybrid discrete teaching-learning based meta-heuristic for solving no-idle flow shop scheduling problem with total tardiness criterion[J]. Computers & Operations Research, 2018,94: 89-105. [9] 刘翱,冯骁毅,邓旭东,任亮,刘波.求解零空闲置换流水车间调度问题的离散烟花算法[J].系统工程理论与实践,2018,38(11):2874-2884. [10] Nagano M S, Rossi F L, Tomazella C P.A new effi-cient heuristic method for minimizing the total tardiness in a no-idle permutation flow shop [J]. Production Engineering, 2017(3): 1-7. [11] Shen J N, Wang L, Wang S Y.A bi-population EDA for solving the no-idle permutation flow-shop scheduling problem with the total tardiness criterion[J]. K nowledge-Based Systems, 2015, 74: 167-175. [12] Tasgetiren M F, Pan Q K, Suganthan P N, et al.A discrete artificial bee colony algorithm for the no-idle permutation flowshop scheduling problem with the total tardiness ecriterion[J]. A pplied Mathematical Model-ling, 2013, 37(10-11): 6758-6779. [13] Chang P C, Chen M H.A block based estimation of distribution algorithm using bivariate model for schedu-ling problems[J]. Soft Computing, 2014, 18(6):1177-1188. [14] Hsu C Y, Chang P C, Chen M H.Alinkageminingin block-based evolutionary algorithm for permutation flow-shop scheduling problem[J]. Computers & Industrial. Engineering, 2015,83: 159-171. [15] 刘全,王晓燕,傅启明,等.双精英协同进化遗传算法.[J].软件学报,2012,23(4):765-775. [16] Nawaz M, Jr E E E, Ham I. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem[J]. Omega, 1983, 11(1): 91-95. [17] Jiang H, Kwong C K, Park W Y, et al.Amulti-objective PSO approach of mining association rules for affective design based on online customer reviews[J].Journal of Engineering Design, 2018, 29(7):38 1-403. [18] Sarath K N V D, Ravi V. Association rule mining using binary particle swarm optimization [J]. Engineering Applications of Artificial Intelligence, 2013, 26(8): 1832-1 840. [19] Menicholas P D, Murphy T B, M. O' Regan. Standard-ising the lift of an association rule[J]. Computational Statistics and Data Analysis, 2008, 52(10):4712-4721. [20] Chang P C, ChenS S, Fan C Y. M ining gene structures to inject artificial chromosomes for genetic algorithm in single machine scheduling problems[J]. Applied Soft Computing, 2008, 8(1): 767-777. [21] 王凌,沈婧楠,王圣尧,邓瑾.协同进化算法研究进展[J].控制与决策,2015,30(02):193-202. [22] Miller B L, Goldberg D E.Genetic algorithms, tournament selection, and the effects of noise[J]. Complex Systems,1995, 9(3): 193-212. [23] Taillard E.Benchmarks for basic scheduling problems [J]. European Journal of Operational Research, 1993. 64(2): 278-285. [24] Baker K R, Bertrand J W M. An investigation of due-date assignment rules with. constrained tightness [J]. Journal of Operations Management, 1981,1(3): 109-120. |