Recommendation Algorithm Using Attention-based Autoencoder
WANG Yong1, LIU Dong1, DU Xiwei2, XIAO Ling1
1. School of Economics and Management, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; 2. School of Cyberspace Security and Information Law, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
WANG Yong, LIU Dong, DU Xiwei, XIAO Ling. Recommendation Algorithm Using Attention-based Autoencoder[J]. Operations Research and Management Science, 2024, 33(2): 57-63.
[1] 陶维成,党耀国.基于灰色关联聚类的协同过滤推荐算法[J].运筹与管理,2018,27(1):84-88. [2] KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 30-37. [3] WEN X. Using deep learning approach and IoT architecture to build the intelligent music recommendation system[J]. Soft Computing, 2021, 25(4): 3087-3096. [4] SEDHAIN S, MENON A K, SANNER S, et al. Autorec: Autoencoders meet collaborative filtering[C]//ALDO G. Proceedings of the 24th International Conference on World Wide Web. Florence: ACM, 2015: 111-112. [5] WU Y, DUBOIS C, ZHENG A X, et al. Collaborative denoising auto-encoders for top-n recommender systems[C]//PAUL N B. Proceedings of the Ninth ACM International Conference on Web Search and Data Mining. San Francisco: ACM, 2016: 153-162. [6] HE X, LIAO L, ZHANG H, et al. Neural collaborative filtering[C]//RICK B. Proceedings of the 26th International Conference on World Wide Web. Perth: International World Wide Web Conferences Steering Committee, 2017: 173-182. [7] CHAE D K, KANG J S, KIM S W, et al. Cfgan: A generic collaborative filtering framework based on generative adversarial networks[C]//ALFREDO C. Proceedings of the 27th ACM International Conference on Information and Knowledge Management. Torino: ACM, 2018: 137-146. [8] JHAMB Y, EBESU T, FANG Y. Attentive contextual denoising autoencoder for recommendation[C]//DAWEI S. Proceedings of the 2018 ACM SI-GIR International Conference on Theory of Information Retrieval. Tianjin: ACM, 2018: 27-34. [9] CHENG H T, KOC L, HARMSEN J, et al. Wide & deep learning for recommender systems[C]//ALEXANDROS K. Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. Boston: ACM, 2016: 7-10. [10] SHAN Y, HOENS T R, JIAO J, et al. Deep crossing: Web-scale modeling without manually crafted combinatorial features[C]//BALAJI K. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 255-262. [11] RENDLE S, FREUDENTHALER C, GANT-NER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]//DAVID M. Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. Montreal: AUAI Press, 2012: 452-461. [12] GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[C]//YEE W T, MIKE T. Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Sardinia: PMLR, 2010: 249-256.