[1] CHURCH R, REVELLE C. The maximal covering location problem[J]. Papers in Regional Science, 1974, 32(1): 101-118. [2] 宋艳,滕辰妹,姜金贵.基于改进NSGA-Ⅱ算法的多级服务设施备用覆盖选址决策模型[J].运筹与管理,2019,28(1):71-78. [3] 陈煜婷,张惠珍.双层级医疗设施选址问题及禁忌搜索算法[J].运筹与管理,2021,30(9):56-63. [4] LI L, WANGD D, LI T, et al. SCENE: A scalable two-stage personalized news recommendation system[C]//Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, July 25-29, 2011, Beijing, China. New York: ACM, 2011: 124-134. [5] KAR B, WU H K, LIN Y D. The budgeted maximum coverage problem in partially deployed software defined networks[J]. IEEE Transactions on Network & Service Management, 2016, 13(3): 394-406. [6] GOLDSCHMIDT O, NEHME D, YU G. Note: On the set-union knapsack problem[J]. Naval Research Logistics, 1994, 41(6): 833-842. [7] WEI Z Q, HAO J K. Iterated two-phase local search for the set-union knapsack problem[J]. Future Generation Computer Systems, 2019, 101: 1005-1017. [8] KHULLER S, MOSS A, NAOR J S. The budgeted maximum coverage problem[J]. Information Processing Letters, 1999, 70(1): 39-45. [9] SVIRIDENKO M. A note on maximizing a submodular set function subject to a knapsack constraint[J]. Operations Research Letters, 2004, 32(1): 41-43. [10] FEIGE U, MIRROKNI V S, VONDRÁK J. Maximizing non-monotone submodular functions[J]. SIAM Journal on Computing, 2011, 40(4): 1133-1153. [11] COHEN R, KATZIR L. The generalized maximum coverage problem[J]. Information Processing Letters, 2008, 108(1): 15-22. [12] 张生,何尚录.预算型最大覆盖问题的近似算法[J].河北大学学报(自然科学版),2008(1):7-9+13. [13] CURTIS D E, PEMMARAJU S V, POLGREEN P. Budgeted maximum coverage with overlapping costs: Monitoring the emerging infections network[C]//Society for the Industrial and Applied Mathematics. 2010 Proceedings of the Twelfth Workshop on Algorithm Engineering and Experiments (ALENEX). Philadelphia: SIAM, 2010: 112-123. [14] VANHEUVEN VAN STAERELING I, KEIJZER B D, SCHÄFER G. The Ground-Set-Cost budgeted maximum coverage problem[C]//41st International Symposium on Mathematical Foundations of Computer Science, August 22-26, 2016, Kraków, Poland. Germa: MFCS, 2016, 50(1): 1-13. [15] LI L W, WEI Z Q, HAO J K, et al. Probability learning based tabu search for the budgeted maximum coverage problem[J]. Expert Systems with Applications, 2021, 183(6): 115-310. [16] ZHOU J R, ZHENG J Z, HE K. Effective variable depth local search for the budgeted maximum coverage problem[J]. International Journal of Computational Intelligence Systems, 2022, 15(1): 43-65. [17] GLOVER F. Artificial intelligence, heuristic frameworks and tabu search[J]. Managerial and Decision Economics, 1990, 11(5): 365-375. [18] WEI Z, HAO J K.Kernel based tabu search for the set-union knapsack problem[J]. Expert Systems with Applications, 2021, 165: 113802. [19] WEI Z, HAO J K. Multistart solution-based tabu search for the set-union knapsack problem[J]. Applied Soft Computing, 2021, 105: 107260. [20] LAI X J, HAO J K, YUE D. Two-stage solution-based tabu search for the multidemand multidimensional knapsack problem[J]. European Journal of Operational Research, 2019, 274(1): 35-48. [21] 苏欣欣,王红卫,秦虎,等.混合启发式算法求解多配送人员车辆路径问题[J].运筹与管理,2022,31(2):42-47. [22] LIN G, GUAN J, LI Z, et al. A hybrid binary particle swarm optimization with tabu search for the set-union knapsack problem[J]. Expert Systems with Application, 2019, 135(11): 201-211. |