Operations Research and Management Science ›› 2015, Vol. 24 ›› Issue (4): 137-140.DOI: 10.12005/orms.2015.0131

• Theory Analysis and Methodology Study • Previous Articles     Next Articles

The Pebbling Number of Multi-fan Graphs and Graham’s Conjecture

WANG Yan-qiu,YE Yong-sheng   

  1. College of Mathematical Science, Huaibei Normal University, Huaibei 235000, China
  • Received:2013-12-28 Online:2015-08-12

多扇图的Pebbling数和Graham猜想

王艳秋, 叶永升   

  1. 淮北师范大学 数学科学学院,安徽 淮北 235000
  • 作者简介:王艳秋(1989-),女,安徽淮北人,硕士生,研究方向:图论及其应用;叶永升(1964-),男,安徽嘉山人,教授,硕士生导师,研究方向:图论及其应用。
  • 基金资助:
    安徽省自然科学基金资助项目(1408085MA08; KJ2013Z279)

Abstract: The pebbling number of a graph G,f(G) , is the least n, no matter how n pebbles are placed on the vertices of G, a pebble can be moved to any vertex by a sequence of pebbling moves. A pebbling move consists of the removal of two pebbles vertex and the placement of one of those two pebbles on an adjacent vertex. Graham conjectured that for any connected graphs G and H,f(G×H)f(G)f(H) . Multi-fan graph Fn1,n2,…,nm is a joint-graph P1∨(Pn1∪Pn2∪…∪Pnm) with n1+n2+…+nm+1 vertices. This paper shows that f(Fn1,n2,…,nm)= n1+n2+…+nm+2 and Fn1,n2,…,nm with the 2-pebbling property. Graham’s conjecture holds of a multi-fan graphs by a graph with the 2-pebbling property. As a corollary, Graham’s conjecture holds when G and H are multi-fan graphs.

Key words: operational research, pebbling number, Graham’s conjecture, pebbling move, multi-fan graphs

摘要: G的pebbling数f(G)是最小的整数n,使得不论n个pebble如何放置在G的顶点上,总可以通过一系列的pebbling移动把1个pebble移到任意一个顶点上,其中一个pebbling移动是从一个顶点处移走两个pebble而把其中的一个移到与其相邻的一个顶点上。Graham猜想对于任意的连通图G和H有f(G×H)f(G)f(H)。多扇图Fn1,n2,…,nm是指阶为n1+n2+…+nm+1的联图P1∨(Pn1∪Pn2∪…∪Pnm)。本文首先给出了多扇图的pebbling数,然后证明了多扇图Fn1,n2,…,nm具有2-pebbling性质,最后论述了对于一个多扇图和一个具有2-pebbling性质的图的乘积来说,Graham猜想是成立的。作为一个推论,当G和H都是多扇图时,Graham猜想成立。

关键词: 运筹学, pebbling数, Graham猜想, pebbling移动, 多扇图

CLC Number: