[1] Yang Z J, You W, Ji G L. Using partial least squares and support vector machines for bankruptcy prediction[J]. Expert Systems with Applications, 2011, 38: 8336-8342. [2] Bao X Z, Tao Q Y. Dynamic financial distress prediction based on rough set theory and EWMA model[J]. International Journal of Applied Mathematics and Statistics, 2013, 48(18): 339-346 [3] Jae K B. Predicting financial distress of the south korean manufacturing industries[J]. Expert Systems with Applications, 2012, 39 (10): 9159-9165. [4] Sun J, Jia M Y, Li H. Adaboost ensemble for financial distress prediction: an empirical comparison with data from Chinese listed companies[J]. Expert Systems with Applications, 2011, 38(8): 9305-9312. [5] Frydman H, Altman E I, Kao D. Introducing recursive partitioning for financial classification: the case of financial distress[J]. Journal of Finance, 1985, 40(1): 269-291. [6] 姚靠华,蒋艳辉.基于决策树的财务预警[J].系统工程,2005,23(10):102-106. [7] 陈晓红,易松青.基于CHAID方法的中小企业上市公司财务预警研究[J].经济管理研究,2007,3: 50-54. [8] Lee S. Using data envelopment analysis and decision trees for efficiency analysis and recommendation of B2C controls[J]. Decision Support Systems, 2010, (49): 486-497. [9] 赵卫东,李旗号.粗集在决策树优化中的应用[J].系统工程学报,2001,16(4):289-295. [10] 蒋芸,李战怀,张强等.一种基于粗糙集构造决策树的新方法[J].计算机应用,2004,24(8):21-23. [11] 高静,徐章艳等.一种新的基于粗糙集模型的决策树算法[J].计算机工程,2008,34,(3):9-11. [12] 鲍新中,杨宜.基于聚类-粗糙集-神经网络的企业财务危机预警[J].系统管理学报,2013,22(03):358-365 [13] Iftikhar U S, Toshinori M. Application of rough set and decision tree for characterization of premonitory factors of low seismic activity[J]. Expert Systems with Applications, 2009, 36: 102-110. [14] Chen M Y. Predicting corporate financial distress based on integration of decision tree classification and logistic regression[J]. Expert Systems with Applications, 2011, (38): 11261-11272. |