Operations Research and Management Science ›› 2016, Vol. 25 ›› Issue (2): 214-219.DOI: 10.12005/orms.2016.0066

• Application Research • Previous Articles     Next Articles

An Investment Decision Model and Its Experimental Research on P2P Lending Network

GUO Yan-hong, LIU Wei, LUO Chun-yu   

  1. Faculty of Management and Economics, Dalian University of Technology, Dalian 116024, China
  • Received:2014-03-29 Online:2016-04-25

在线网络借贷投资决策模型及实证研究

郭艳红,刘苇,雒春雨   

  1. 大连理工大学 管理与经济学部,辽宁 大连 116024
  • 作者简介:郭艳红(1977-),女,吉林洮南人,博士,副教授,研究方向:基于大数据分析的投资决策、精准营销。
  • 基金资助:
    国家自然科学基金资助项目(71402014);教育部人文社科基金资助项目(14YJCZH044)

Abstract: As a new emerging application of E-business, Person to Person Lending has played an important role after the world financial crisis in the financial market. This paper gives a novel idea about how to analyze information from investors but not from borrowers to help investors select those high value with low risk loans. Specifically, investor profiles are built at first based on quantitative analysis of past performances, risk preferences, and investment experiences of investors. Then, an investor composition analysis model is developed, which can be used to improve the investment decisions. At last, we do a serious of experiments based on the data of the world's largest P2P lending marketplace. Experimental results suggest that the investor composition analysis can indicate the investment value effectively. Also, this data-driven investor composition model is superior to other decision models.

Key words: P2P Lending, Investment decision making, Investors Composition, Investors Profile

摘要: P2P网络借贷作为电子商务在金融领域的延伸与应用,近年来得到广大学者的关注.但是目前的理论研究中,鲜有从投资者信息挖掘的角度进行投资决策分析.本文提出一个新颖的方法,即投资者构成分析方法,通过分析贷款的众多投资者信息遴选出最有价值的投资,辅助投资者进行投资决策.首先从投资者的历史投资收益率、风险偏好以及投资经验三个维度构建投资者档案(investor profile),进而基于投资者档案构建投资者构成分析模型,最后通过美国最大的在线网络借贷网站Prosper的数据,对本文提出的构想及模型进行了实证研究.实验结果表明本文提出的利用投资者构成分析的方法辅助投资者进行投资决策是可行的,文中构建的模型表现出良好的预测能力,能够有效地筛选出有价值的投资.

关键词: 网络借贷, 投资决策, 投资者构成分析, 投资者档案

CLC Number: