[1] Itō K. On stochastic differential equations[M]. American Mathematical Society, 1951, 4: 1-51. [2] Black F, Scholes M. The pricing of options and corporate liabilities[J]. The Journal of Political Economy, 1973: 637-654. [3] Merton R C. Option pricing when underlying stock returns are discontinuous[J]. Journal of Financial Economics, 1976, 3(1-2): 125-144. [4] Cox J C, Ross S A. The valuation of options for alternative stochastic processes[J]. Journal of Financial Economics, 1976, 3(1-2): 145-166. [5] Boyle P P. Options: A monte carlo approach[J]. Journal of Financial Economics, 1977, 4(3): 323-338. [6] Kemna A G Z, Vorst A C F. A pricing method for options based on average asset values[J]. Journal of Banking & Finance, 1990, 14(1): 113-129. [7] Pellizzari P. Efficient Monte Carlo pricing of European options using mean value control variates[J]. Decisions in Economics and Finance, 2001, 24(2): 107-126. [8] Glasserman P. Monte Carlo methods in financial engineering[M]. Springer Science & Business Media, 2003. [9] Korn R, Zeytun S. Efficient basket Monte Carlo option pricing via a simple analytical approximation[J]. Journal of Computational and Applied Mathematics, 2013, 243: 48-59. [10] Paskov S H, Traub J F. Faster valuation of financial derivatives[J]. The Journal of Portfolio Management, 1995, 22(1): 113-123. [11] Joy C, Boyle P P, Tan K S. Quasi-monte carlo methods in numerical finance[J]. Management Science, 1996, 42(6): 926-938. [12] Cranley R, Patterson T N L. Randomization of number theoretic methods for multiple integration[J]. SIAM Journal on Numerical Analysis, 1976, 13(6): 904-914. [13] Boyle P, Broadie M, Glasserman P. Monte Carlo methods for security pricing[J]. Journal of Economic Dynamics and Control, 1997, 21(8): 1267-1321. [14] Akesson F, Lehoczky J P. Path generation for quasi-monte carlo simulation of mortgage-backed securities[J]. Management Science, 2000, 46(9): 1171-1187. [15] Hickernell F J, Lemieux C, Owen A B. Control variates for quasi-monte carlo[J]. Statistical Science, 2005, 20(1): 1-31. [16] 张普,吴冲锋.基于非参数蒙特卡罗模拟的股票波动性价值研究[J].管理科学,2009,22(3):89-95. [17] 张丽花,张卫国,徐文坤.美式障碍期权定价的总体最小二乘拟蒙特卡罗模拟方法[J].数理统计与管理,2013,32(5):923-930. [18] Merton R C. Lifetime portfolio selection under uncertainty: the continuous-time case[J].The Review of Economics and Statistics, 1969: 247-257. [19] Andersen T G, Bollerslev T. Heterogeneous information arrivals and return volatility dynamics: uncovering the long-run in high frequency returns[J]. The Journal of Finance, 1997, 52(3): 975-1005. [20] Engle R F. Autoregressive Conditional Heteroskedasticity With Estimates of the Variance of U.K. Inflation[J]. Econometrica, 1982, 50. [21] Bollerslev T. Generalized autoregressive conditional heteroskedasticity[J]. Journal of Econometrics, 1986, 31(3): 307-327. [22] Brandt M W, Jones C S. Volatility forecasting with range-based EGARCH models[J]. Journal of Business & Economic Statistics, 2006, 24(4): 470-486. [23] Hung J C, Lee M C, Liu H C. Estimation of value-at-risk for energy commodities via fat-tailed GARCH models[J]. Energy Economics, 2008, 30(3): 1173-1191. [24] Fang Y, Liu L, Liu J Z. A dynamic double asymmetric copula generalized autoregressive conditional heteroskedasticity model: application to China’s and US stock market[J]. Journal of Applied Statistics, 2015, 42(2): 327-346. [25] 郑振龙,黄薏舟.波动率预测:GARCH模型与隐含波动率[J].数量经济技术经济研究,2010:140-150. [26] 朱信凯,韩磊,曾晨晨.信息与农产品价格波动:基于EGARCH模型的分析[J].管理世界,2012,(11):57-66. [27] 吴恒煜,朱福敏,温金明.基于ARMA-GARCH调和稳态Levy过程的期权定价[J].系统工程理论与实践,2013,33(11):2721-2733. [28] 李传乐.我国商业银行市场风险量化体系研究[J].金融发展研究,2009,(3):62-66. [29] Jarque C M, Bera A K. A test for normality of observations and regression residuals[J]. International Statistical Review/Revue Internationale de Statistique, 1987: 163-172. [30] Ljung G M, Box G E P. On a measure of lack of fit in time series models[J]. Biometrika, 1978, 65(2): 297-303. [31] Dickey D A, Fuller W A. Distribution of the estimators for autoregressive time series with a unit root[J]. Journal of the American Statistical Association, 1979, 74(366a): 427-431. [32] Phillips P C B, Perron P. Testing for a unit root in time series regression[J]. Biometrika, 1988, 75(2): 335-346. [33] Kwiatkowski D, Phillips P C B, Schmidt P, et al. Testing the null hypothesis of stationarity against the alternative of a unit root: how sure are we that economic time series have a unit root?[J]. Journal of Econometrics, 1992, 54(1): 159-178. |