[1]Markowitz H. Portfolio selection[J]. Journal of Finance, 1952, 7(1): 77-91. [2]Konno H, Yamazaki H. Mean-absolute deviation portfolio optimization model and its applications to tokyo stock market[J]. Management Science, 1991, 37(5): 519-531. [3]Alexander G J, Baptista A M. A Comparison of VaR and CVaR Constraints on Portfolio Selection with the Mean-Variance Model[J]. Management Science, 2004, 50(9): 1261-1273. [4]Kolm P N, Tütüncü R, Fabozzi F J. 60 Years of portfolio optimization: Practical challenges and current trends[J]. European Journal of Operational Research, 2014, 234(2): 356-371. [5]Lahmiri S. Long memory in international financial markets trends and short movements during 2008 financial crisis based on variational mode decomposition and detrended fluctuation analysis[J]. Physica A, 2015, 437: 130-138. [6]Sensoy A, Tabak B M. Time-varying long term memory in the European Union stock markets[J]. Physica A, 2015, 436: 147-158. [7]吴玉宝, 汪金菊. 沪深股市的相关结构分析与投资组合风险度量——基于ARFIMA-GARCH-Copula模型[J]. 运筹与管理, 2016, 25(2): 220-225. [8]Domino K. The use of the Hurst exponent to predict changes in trends on the Warsaw Stock Exchange[J]. Physica A, 2011, 390(1): 98-109. [9]Molino-Minero-Re E, García-Nocetti F, Benítez-Pérez H. Application of a Time-Scale Local Hurst Exponent analysis to time series[J]. Digital Signal Processing, 2015, 37: 92-99. [10]Tzouras S, Anagnostopoulos C, McCoy E. Financial time series modeling using the Hurst exponent[J]. Physica A, 2015, 425: 50-68. [11]Wang Y, Liu L, Gu R, Cao J, Wang H. Analysis of market efficiency for the Shanghai stock market over time[J]. Physica A, 2010, 389(8): 1635-1642. [12]曹兵兵, 樊治平, 于淑静. 考虑决策者心理行为的证券投资组合决策方法研究[J]. 运筹与管理, 2015, 24(2): 178-184. [13]谢军, 高斌. 基于投资者情绪的市场均衡分析[J]. 运筹与管理, 2015, 24(6): 211-216. [14]马琳, 何平, 殷切. 中国A股市场短期与长期定价效率研究[J]. 中国软科学, 2015(3): 182-192. [15]Horta P, Lagoa S, Martins L. The impact of the 2008 and 2010 financial crises on the Hurst exponents of international stock markets: Implications for efficiency and contagion[J]. International Review of Financial Analysis, 2014, 35: 140-153. [16]Yim K, Oh G, Kim S. An analysis of the financial crisis in the KOSPI market using Hurst exponents[J]. Physica A, 2014, 410: 327-334. [17]Domino K, B?achowicz T. The use of copula functions for modeling the risk of investment in shares traded on world stock exchanges[J]. Physica A, 2015, 424: 142-151. [18]Sorensen E H, Miller K L, Ooi C K. The Decision Tree Approach to Stock Selection[J]. Journal of Portfolio Management, 2000, 27(1): 42-52. [19]Wu M-C, Lin S-Y, Lin C-H. An effective application of decision tree to stock trading[J]. Expert Systems with Applications, 2006, 31(2): 270-274. [20]Roko I, Gilli M. Using economic and financial information for stock selection[J]. Comput Manage Sci, 2008, 5(4): 317-335. [21]Lin X, Yang Z, Song Y. Short-term stock price prediction based on echo state networks[J]. Expert Systems with Applications, 2009, 36(3): 7313-7317. [22]Booth A, Gerding E, McGroarty F. Automated trading with performance weighted random forests and seasonality[J]. Expert Systems with Applications, 2014, 41(8): 3651-3661. [23]Patel J, Shah S, Thakkar P, Kotecha K. Predicting stock and stock price index movement using Trend Deterministic Data Preparation and machine learning techniques[J]. Expert Systems with Applications, 2015, 42(1): 259-268. [24]bikowski K. Using Volume Weighted Support Vector Machines with walk forward testing and feature selection for the purpose of creating stock trading strategy[J]. Expert Systems with Applications, 2015, 42(4): 1797-1805. [25]Breiman L. Bagging predictors[J]. Machine Learning, 1996, 24(2): 123-140. [26]Breiman L. Random Forests[J]. Machine Learning, 2001, 45(1): 5-32. [27]Brown I, Mues C. An experimental comparison of classification algorithms for imbalanced credit scoring data sets[J]. Expert Systems with Applications, 2012, 39(3): 3446-3453. [28]Ballings M, Van den Poel D, Hespeels N, Gryp R. Evaluating multiple classifiers for stock price direction prediction[J]. Expert Systems with Applications, 2015, 42(20): 7046-7056. [29]杨帆, 林琛, 周绮凤, 符长虹, 罗林开. 基于随机森林的潜在k近邻算法及其在基因表达数据分类中的应用[J]. 系统工程理论与实践, 2012, 32(4): 815-825. [30]余湄, 周荣喜, 吴孟. 投资模型选择问题研究——理论模型及中国股票市场的投资实证研究[J]. 数量经济技术经济研究, 2013, 30(2): 98-110. |