XUE Li. Economic Design of Variable Sampling Intervals EWMA Control Charts under Geometric Distribution[J]. Operations Research and Management Science, 2013, 22(4): 126-132.
[1] Roberts S W. A comparison of some control chart procedures[J]. Technometrics, 1966, 8(3): 411-430. [2] Reynolds M R Jr, Amin R W, Arnold J C, Nachlas J A. X-bar charts with variable sampling intervals[J]. Technometrics, 1988, 30(2): 181-192. [3] Saccucci M S, Amin R W, Lucas J M. Exponentially weighted moving average control schemes with variable sampling intervals[J]. Communications in Statistics-Simulation and Computation, 1992, 21(3): 627-657. [4] Reynolds M R Jr, Arnold J C. EWMA control charts with variable sample sizes and variable sampling intervals[J]. IIE Transactions, 2001, 32(6): 511-530. [5] Xie M, Goh T N. The use of probability limits for process control based on geometric distribution[J]. International Journal of Quality & Reliability Management, 1997, 14(1): 64-73. [6] 薛丽.可变抽样区间的几何EWMA控制图设计[J].统计与决策,2010,19:43-45. [7] Duncan A J. The economic design of X charts used to maintain current control of a process[J]. American Statistical Association, 1956, 51(274): 228-242. [8] Chou C Y, Cheng J C, Lai W T. Economic design of variable sampling intervals EWMA charts with sampling at fixed times using genetic algorithms[J]. Expert Systems with Applications, 2008, 34(1): 419-426. [9] Serel D A, Moskowitz H. Joint economic design of EWMA control charts for mean and variance[J]. European Journal of Operational Research, 2008, 184(1): 157-168. [10] Lorenzen T J, Vance L C. The economic design of control charts: a unified approach[J]. Technometrics, 1986, 28(1): 3-10. [11] Ihsan K. A genetic algorithm approach to determine the sample size for control charts with variables and attributes[J]. Expert Systems with Applications, 2009, 36(5): 8719-8734. [12] Ihsan K. A genetic algorithm approach to determine the sample size for attribute control charts[J]. Expert Systems with Applications, 2009, 179(10): 1552-1566.