Operations Research and Management Science ›› 2013, Vol. 22 ›› Issue (3): 102-108.

• Theory Analysis and Methodology Study • Previous Articles     Next Articles

Application of Swarm Size Adaptive Particle Swarm Optimization to Continuous Location of Distribution Center

QU Bin, LU Liu-si   

  1. School of Economics and Management of North China Electric Power University, Beijing 102206, China
  • Received:2011-02-25 Online:2013-06-25

种群规模自适应粒子群在配送中心连续型选址中的应用

瞿斌1, 陆柳丝2   

  1. 华北电力大学 经济与管理学院,北京 102206
  • 作者简介:瞿斌(1971-),男,安徽人,博士,副教授,硕士生导师,主要研究方向:不确定决策;陆柳丝(1987-),女,广西人,硕士研究生,研究方向:物流系统规划与设计。
  • 基金资助:
    国家自然科学基金资助项目(71071054);中央高校基本科研业务费专项资金项目(12MS69)

Abstract: In this paper, according to the pattern of “plant-distribution center-users” which is more realistic, a continuous location model of logistics distribution center is established, and a solving algorithm is proposed to solve the large-scale location problem. The algorithm is derived from the combination of improved ALA method with adaptive PSO whose robustness is stronger. In the algorithm, swarm size changes adaptively, the classical particles move equation is improved, the study factors are eliminated, the inertia factor changes adaptively according to fitness value, and the improvement of ALA method increases the algorithm efficiency. Numerical experiments show that the model has practical advantages to a certain extent, and that the algorithm whose optimization ability and robustness are stronger can effectively avoid getting the local optimal.

Key words: logistics system planning, adaptive particle swarm optimization algorithm, location problem, logistics integration

摘要: 本文依照更具有现实意义的“加工厂—配送中心—用户”的模式建立物流配送中心连续型选址模型,并针对较大规模的选址问题提出求解算法。该算法是将具有较强鲁棒性的自适应粒子算法和改进的ALA(Alert Location-Allocation)方法结合而得,该算法中种群规模自适应变化,对经典粒子移动方程进行改进,消除了学习因子,惯性因子随粒子适应值自适应变化,改进的ALA方法提高了算法计算效率。数值试验表明,本文所建模型具有一定的实践优越性,所提出的算法能有效避免陷入局部最优,寻优能力和鲁棒性均较强。

关键词: 选址, 物流系统规划, 自适应粒子群算法, 物流集成

CLC Number: