运筹与管理 ›› 2017, Vol. 26 ›› Issue (3): 138-147.DOI: 10.12005/orms.2017.0068

• 应用研究 • 上一篇    下一篇

VaR测度下的风险对冲策略研究

黄金波, 郑军, 丁杰, 周鸿涛   

  1. 广东财经大学 金融学院,广东 广州 510320
  • 收稿日期:2015-09-14 出版日期:2017-03-25
  • 作者简介:黄金波(1983-),男,河南光山人,副教授,博士,研究方向:金融风险管理;郑军(1981-),贵州铜仁人,男,讲师,博士,研究方向:房地产金融;丁杰(1981-),男,湖北襄阳人,讲师,博士,研究方向:金融工程与风险管理;周鸿涛(1992-),男,广东茂名人,本科生。
  • 基金资助:
    国家自然科学基金项目(71231008,71603058,71573056);教育部人文社会科学研究项目(16YJC790033);广东省自然科学基金项目(2014A030312003,2016A030313656);广东省哲学社会科学规划项目(GD15YYJ06,GD15XYJ03);广州市哲学社会科学规划项目(15Q20);广州市社会科学界联合会2016年“羊城青年学人”研究项目(16QNXR08)

Risk Hedging Strategies Based on Value-at-Risk

HUANG Jin-bo, ZHENG Jun, DING Jie, ZHOU Hong-tao   

  1. School of Finance, Guangdong University of Finance & Economics, Guangzhou 510320, China
  • Received:2015-09-14 Online:2017-03-25

摘要: 本文分别在正态分布和任意分布设定下讨论最小在险价值(VaR)的风险对冲问题。在正态分布设定下,本文深入讨论最小方差对冲比率和最小VaR对冲比率的性质,并得出最小VaR对冲策略下组合收益率的均值和方差大于最小方差策略下组合收益率的均值和方差。在任意分布设定下,本文构建一种新的VaR对冲模型,该模型引入非参数核估计方法对VaR进行估计,然后基于VaR核估计量建立风险对冲问题,实现风险估计与风险对冲同步进行。实证结果非常稳健地表明,不做任何分布假设下的核估计法得到的风险对冲效果优于最小方差对冲策略和正态分布设定下的最小VaR对冲策略。

关键词: 风险对冲, 核估计, 在险价值

Abstract: In this paper, we research the risk hedging strategies based on Value-at-Risk under normal distribution and arbitrary distribution settings respectively. Under the assumption of normal distribution, this paper discusses the properties of the hedge ratio of minimum variance strategy and minimum VaR strategy thoroughly and find that the mean and variance of portfolio return induced by minimum VaR strategy are smaller than minimum variance strategy. Without any distribution assumption, this paper constructs a new VaR hedging model which firstly estimates VaR by nonparametric kernel estimation method and then embeds the VaR kernel estimator into minimum VaR fomula. By this way, we achieve the goal that risk estimation and risk hedging are implemented simultaneously. The empirical results are very robust to show that the kernel estimation method can reduce risk more effectively than minimum variance strategy and minimum VaR strategy under normal distribution setting.

Key words: risk hedging, kernel estimation, value-at-risk

中图分类号: