[1] 兑红炎,陈立伟,周毫,王宁.基于系统可靠性的组件综合重要度变化机理分析[J].运筹与管理,2018,27(2):79-84. [2] 邱光琦,黄思,古莹奎.多状态系统的动态可靠性度量及重要度分析[J].华南理工大学学报(自然科学版),2017,45(5):52-58. [3] 王文选,高行山,周长聪.基于点估计的矩独立重要性测度分析方法[J].机械工程学报,2017,53(8):16-24. [4] 夏侯唐凡,刘宇,张皓冬,张成林.考虑认知不确定性的多状态系统Birnbaum重要度分析方法[J].机械工程学报,2018,54(8):223-232. [5] Apostolakis G E. How useful is quantitative risk assessment?[J]. Risk Analysis, 2004, 24(3): 515-520. [6] Saltelli A. Sensitivity analysis for importance assessment[J]. Risk Analysis, 2002, 22(3): 579-590. [7] Nakashima K, Yamato K. Variance-importance of system components[J]. IEEE Transactions on Reliability, 1982, 31(1): 99-100. [8] Bier V M. A measure of uncertainty importance for components in fault trees[J]. Transactions of the American Nuclear Society, 1983, 45(6): 384-385. [9] Iman R L. A Matrix-based approach to uncertainty and sensitivity analysis for fault trees[J]. Risk Analysis, 1987, 7(1): 21-33. [10] Helton J C, Iman R L, Johnson J D, Leigh C D. Uncertainty and sensitivity analysis of a model for multicomponent aerosol dynamics[J]. Nuclear Technology, 1986, 73(3): 320-342. [11] Andsten R S, Vaurio J K. Sensitivity, uncertainty, and importance analysis of a risk assessment[J]. Nuclear Technology, 1992, 98(2): 160-170. [12] Iman R L, Hora S C. A robust measure of uncertainty importance for use in fault tree system analysis[J]. Risk Analysis, 1990, 10(3): 401-406. [13] Khatibrahbar M, Cazzoli E, Lee M, et al.. A probabilistic approach to quantifying uncertainties in the progression of severe accidents[J]. Nuclear Science and Engineering, 1989, 102(3): 219-259. [14] Chang K P, Ahn K I. A new approach for measuring uncertainty importance and distributional sensitivity in probabilistic safety assessment[J]. Reliability Engineering & System Safety, 1994, 46(3): 253-261. [15] 司书宾,蔡志强,王宁,张守京.重要度计算方法及其应用[C].中国运筹学会可靠性分会可靠性学术会议,2013. |