运筹与管理 ›› 2022, Vol. 31 ›› Issue (5): 177-182.DOI: 10.12005/orms.2022.0166

• 应用研究 • 上一篇    下一篇

基于模糊认知图的我国自贸区洗钱风险影响因素研究

高增安1, 汪小草2   

  1. 西南交通大学 经济管理学院,四川 成都 610031
  • 收稿日期:2020-03-26 出版日期:2022-05-25 发布日期:2022-07-20
  • 作者简介:高增安(1965-),男,四川天全人,博士,教授,博士生导师,研究方向:反洗钱与金融监管;汪小草(1995-),女,四川资阳人,硕士研究生,研究方向:自贸区建设、反洗钱。
  • 基金资助:
    国家社会科学基金资助项目(16XGJ001)

Factors of Money Laundering Risk in China's Pilot Free Trade Zones Based on Fuzzy Cognitive Map

GAO Zeng-an1, WANG Xiao-cao2   

  1. School of Economics and Management, Southwest Jiaotong University, Chengdu 610031, China
  • Received:2020-03-26 Online:2022-05-25 Published:2022-07-20

摘要: 自贸区洗钱风险的影响因素相互关联,通过专家认知判断自贸区洗钱风险各影响因素间相互关系。运用模糊认知图的迭代推理机制,借助灰色关联度,计算各影响因素与自贸区洗钱风险的关联度,识别影响自贸区洗钱风险的主要因素。研究表明,自贸区内反洗钱法律法规健全度、上游犯罪规模、反洗钱监管当局和义务主体履职效力、司法合作水平、上游犯罪结案率是影响自贸区洗钱风险的主要因素,这为我国自贸区反洗钱实务工作提供了决策参考。

关键词: 自贸区, 洗钱风险, 影响因素, 模糊认知图, 灰色关联度

Abstract: The factors affecting money laundering risk in China's Pilot Free Trade Zones (CPFTZs) are interrelated, and their relationships are evaluated by experts' cognition. The paper uses the iterative reasoning mechanism of fuzzy cognitive map and the grey relational analysis to calculate the correlation degree between the factors and CPFTZ money laundering risk, and then recognizes the mainfactors that affect money laundering risk in CPFTZs. It finds that the soundness of anti-money laundering laws and regulations, the scale of predicate crimes, the effectiveness of anti-money laundering supervision authorities and obligatory subjects, the level of judicial cooperation, and the rate of settlement of predicatecrimes aremajor influencing factors, which can be referred to in CPFTZs'anti-money laundering decision-making practice.

Key words: China's pilot free trade zones (CPFTZs), money laundering risk, factors, fuzzy cognitive map, grey relational analysis

中图分类号: