运筹与管理 ›› 2022, Vol. 31 ›› Issue (12): 106-110.DOI: 10.12005/orms.2022.0394

• 理论分析与方法探讨 • 上一篇    下一篇

威布尔更新函数的一个精确近似式

蒋仁言, 张碧雯   

  1. 长沙理工大学 汽车与机械工程学院,湖南 长沙 410114
  • 收稿日期:2020-11-23 发布日期:2023-02-02
  • 作者简介:蒋仁言(1956-),男,湖南省湘乡市,教授,博士,主要研究方向为:质量、可靠性与维修;张碧雯(1996-),女,湖南长沙人,硕士,研究方向:水下机器人。
  • 基金资助:
    国家自然科学基金资助项目(71771029)

An Approximation to Weibull Renewal Function

JIANG Ren-yan, ZHANG Bi-wen   

  1. School of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, China
  • Received:2020-11-23 Published:2023-02-02

摘要: 威布尔分布的更新函数有许多应用,如产品质保政策分析、维修决策优化和备件需求预测。威布尔更新函数没有解析表达式,这给求解各种涉及更新函数的优化问题带来不便。已有的威布尔更新函数近似式有一个共同的问题:其精度随威布尔形状参数的增大而减小。为克服这个问题,本文提出一个新的近似式,对于大的威布尔形状参数(>3.65),其相对误差比已有近似式的相对误差小得多。一个维修政策优化的数例例证其精确性和有用性。

关键词: 威布尔分布, 更新函数, 近似式, 维修政策优化

Abstract: The renewal function of the Weibull distribution has many applications, such as product warranty policy analysis, maintenance decision optimization and spare part demand forecasting. The Weibull renewal function does not have a closed-form analytic expression. This leads to inconvenience for solving the optimization problems that involve the Weibull renewal function. A common problem of the existing approximations of the Weibull renewal function is that the accuracy decreases as the shape parameter increases. To address this issue, a novel approximation is proposed in this paper. When the shape parameter is larger than 3.65, the maximum relative error of the proposed approximation is considerably smaller than the maximum relative errors of the existing approximations. An example that deals with maintenance policy optimization is included to illustrate the accuracy and usefulness of the proposed approximation.

Key words: Weibull distribution, renewal function, approximation, maintenance policy optimization

中图分类号: