[1] 王会娟,陈红佳,高思琴,等.基于TEI@I方法论的玉米期货价格预测研究[J].管理评论.2020,32(7): 293-301. [2] 杨科,黄颖平,田凤平.我国农产品期货市场与其他金融市场的多尺度联动性[J].系统工程理论与实践,2022,42(5): 1172-1184. [3] AKYILDIRIM E, CEPNI O, PHAM L, et al. How connected is the agricultural commodity market to the news-based investor sentiment?[J]. Energy Economics, 2022, 113: 106174. [4] MA F, ZHANG Y J ,WAHAB M I M, et al. The role of jumps in the agricultural futures market on forecasting stock market volatility: New evidence[J]. Journal of Forecasting, 2019, 38(5): 400414. [5] 熊涛,鲍玉昆.基于动态模型平均的大豆期货价格预测研究[J].中国管理科学,2020,28(5): 7988. [6] ANDREASSON P, BEKIROS S, NGUYEN D K, et al. Impact of speculation and economic uncertainty on commodity markets[J]. International Review of Financial Analysis, 2016, 43(1): 115-127. [7] MAKKONEN A, VALLSTROM D, UDDIN G S, et al. The effect of temperature anomaly and macroeconomic fundamentals on agricultural commodity futures returns[J]. Energy Economics, 2021, 100: 105377. [8] WALID B, ABDELFETTAH B. The impact of investor sentiment on returns and conditional volatility in U.S. futures markets[J]. Journal of Multinational Financial Management, 2016, 36: 89-102. [9] WANG S Y , YU L, LAI K K. A novel hybrid AI system framework for crude oil price forecasting[C]//Data Mining and Knowledge Management: Chinese Academy of Sciences Symposium CASDMKM 2004, July 12-14, 2004, Beijing, China. Berlin: Springer, 2005: 233-242. [10] LI J P, LI G W, LIU M X, et al. A novel text-based framework for forecasting agricultural futures using massive online news headlines[J]. International Journal of Forecasting, 2022, 38(1): 35-50. [11] LI X R, SHANG W, WANG S Y. Text-based crude oil price forecasting: A deep learning approach[J]. International Journal of Forecasting, 2019, 35(4): 1548-1560. [12] 苏振兴,扈文秀,杨栎.投资者概念关注对股票收益的影响研究—基于百度搜索数据[J].运筹与管理,2022,31(5): 206-213. [13] WU B R, WANG L, LV S X, et al. Effective crude oil price forecasting using new text-based and big-data-driven model[J]. Measurement,2021, 168: 108468. [14] LING L W, ZHANG D B, CHEN S Y, et al. Can online search data improve the forecast accuracy of pork price in China?[J]. Journal of Forecasting, 2020, 39(4): 671686. [15] 王轩,杨海珍.基于互联网搜索指数的多因素集成下人民币汇率预测[J].系统工程学报,2017,32(3): 360-369. [16] 张同辉,苑莹,曾文.投资者关注能提高市场波动率预测精度吗? —基于中国股票市场高频数据的实证研究[J].中国管理科学,2020,28(11): 192-205. [17] LI Y Z, JIANG S R, LI X, et al. The role of news sentiment in oil futures returns and volatility forecasting: Data-decomposition based deep learning approach[J]. Energy Economics. 2021, 95: 105140. [18] 李大舟,于沛,高巍,等.基于社交媒体文本信息的金融时序预测[J].计算机工程与设计,2021,42(8): 2224-2231. [19] ZHONG S, HITCHCOCK D B. S&P500 stock price prediction using technical, fundamental and text data[J/OL]. arXiv, 2021: 2108.10826V2.https://doi.org/10.48550/arXiv.2108.10826. |