[1] 盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社,2001. [2] 陈希孺.概率论与数理统计[M].北京:科学出版社,2000. [3] Chahar K, Taaffe K. Risk averse demand selection with all-or-nothing orders[J]. Omega, 2009, 37(5): 996-1006. [4] Lahdelma R, Makkonen S, Salminen P. Multivariate gaussian criteria in SMAA[J]. European Journal of Operational Research, 2006, 170: 957-970. [5] 姜广田,樊治平,刘洋,张晓.一种具有正态随机变量的多属性决策方法[J].控制与决策,2009,24(8):1187-1191. [6] 汪新凡,杨小娟.信息不完全确定的动态随机多属性决策方法[J].系统工程理论与实践,2010,30(2): 332-338. [7] Tan C Q, Chen X H. Intuitionistic fuzzy choquet integral operator for multi-criteria decision making[J]. Expert Systems with Applications, 2010, 37: 149-157. [8] Labreuche C, Grabisch M. Generalized choquet-like aggregation functions for handling bipolar scales[J]. European Journal of Operational Research, 2006, 172: 931-955. [9] BüYük zkan G, Feyzioglu O, Ersoy S. Evaluation of 4PL operating models: a decision making approach based on 2-additive choquet integral[J]. International Journal of Production Economics, 2009, 121: 112-120. [10] 章玲,周德群.基于k-可加模糊测度的多属性决策分析[J].管理科学学报,2008,11(6):18-24. [11] Yu L, Wang S, Wen F, Lai K K. Genetic algorithm-based multi-criteria project portfolio selection[J]. Annals of Operations Research, Published online: 18 December, 2010. [12] Graves S B, Ringuest J L. Probabilistic dominance criteria for comparing uncertain alternatives: a tutorial[J]. Omega, 2009, 37: 346-357. [13] Murofushi T, Sugeno M. An interpretation of fuzzy measures and the choquet integral as an integral with respect to a fuzzy measure[J]. Fuzzy Sets and Systems, 1989, 29(2): 201-227. [14] Marichal J L. An axiomatic approach of the discrete choquet integral as a tool to aggregate interacting criteria[J]. IEEE Transactions on Fuzzy Systems, 2000, 8(6): 800-807. |