运筹与管理 ›› 2014, Vol. 23 ›› Issue (4): 64-69.

• • 上一篇    下一篇

基于NSGA-Ⅱ的应急储备库多目标

付德强1, 王旭1, 张伟2   

  1. 1.重庆大学 机械工程学院,重庆 400044;
    2.工业和信息化部电子科学技术情报研究所,北京 100040
  • 收稿日期:2012-12-23 出版日期:2014-04-25
  • 作者简介:付德强(1976-),男,四川乐至,博士研究生,研究方向:物流与供应链管理;王旭(1963-),女,四川南充人,博士生导师,研究方向:物流与供应链管理;张伟(1988-),男,河北廊坊,硕士研究生,研究方向:信息安全应急保障规划。
  • 基金资助:
    国家自然科学基金项目(60905066);本研究得到重庆邮电大学电子商务与现代物流重点实验室支持(ECML201411)

Decision Model of the Multi-objective Supplies Reserve Storage Location Problem Based NSGA-Ⅱ

FU De-qiang1, WANG Xu1, ZHANG Wei2   

  1. 1. ChongQing University, Chongqing 400044, China;
    2. Electronic Technology Information Research Institute. MIIT, Beijing 100040, China
  • Received:2012-12-23 Online:2014-04-25

摘要: 应急物资储备库选址问题是在近年世界灾害多发的现实背景下产生的,根据具体选址问题特点建立了多目标选址决策模型。该模型综合考虑了两种灾害风险下储备库的成本费用、覆盖效率以及对重点地区的备用覆盖,以使模型更加符合实际目标及约束情况。算法设计上,首次采用带精英策略的非支配排序遗传算法(Fast and elitist Non-dominated Sorting Genetic Algorithm Ⅱ,NSGA-Ⅱ)解决储备库多目标选址问题,得到了Pareto非劣解分布并同不带精英策略的常规NSGA算法下的仿真结果进行对比分析。验证了模型的可行性以及NSGA-Ⅱ在解决储备库多目标选址问题的有效性。

关键词: 选址, 多目标决策, 成本费用, NSGA-Ⅱ

Abstract: The problem of emergency supplies reserve storage location has arisen against the background of a world prone to all kinds of disasters. Based on the features of the problem, the paper establishes a multi-objective location decision model. The model takes the cost of supplies storage under random disaster risk, the efficiency of the coverage and the backup coverage of the key areas into comprehensive consideration. Using this angle, the model can apply to the actual objectives and constraint conditions in a better way. On designing the algorithm, the paper applies the NSGA-Ⅱ(Non-dominated Sorting Genetic Algorithm Ⅱ) to the solution of the multi-objective supplies reserve storage location problem for the first time. At last a distrubution of the Pareto non-inferior solution is produced. A comparison between the solution and the one produced by regular NSGA proves the feasibility of the model and effectiveness of NSGA-Ⅱ in solving the multi-objective location decision problem.

Key words: location, multi-objective decision, cost, NSGA-Ⅱ

中图分类号: