[1] Roberts S W. A comparison of some control chart procedures[J]. Technometrics, 1966, 8: 411-430. [2] Roberts S W. Control chart tests based on geometric moving averages[J]. Technometrics, 1959, 1: 239-250. [3] Waldmann K H. Bounds for the distribution of run length of geometric moving average charts[J]. Applied Statistics, 1986, 35: 151-158. [4] Crowder S V. Design of exponentially weighted moving averages schemes[J]. Journal of Quality Technology, 1989, 21: 155-162. [5] Saccucci M S, Lucas J M. Average run lengths for exponentially weighted moving average control schemes using the Markov chain approach[J]. Journal of Quality Technology, 1990, 22: 154-162. [6] Reynolds M R Jr, Amin R W, Arnold J C. X-bar charts with variable sampling intervals[J]. Technometrics, 1988, 30(2): 181-192. [7] Reynolds M R Jr. Variable sampling interval control charts with sampling at fixed times[J]. IIE Transactions, 1996, 28: 497-510. [8] Baxley R V Jr. An application of variable sampling interval control charts[J]. Journal of Quality Technology, 1995, 27: 275-282. [9] 薛丽.可变抽样区间几何EWMA控制图的经济设计[J].运筹与管理,2013,22(4):126-132. [10] Saccucci M S, Amin R W, Lucas J M. Exponentially weighted moving average control schemes with variable sampling intervals[J]. Communications in Statistics-Simulation and Computation, 1992, 21(3): 627-657. [11] 薛丽.监控均值标准差的可变抽样区间EWMA图经济设计[J]. 计算机集成制造系统,2013,19(6):1369-1376. [12] 吉明明,赵选民,唐伟广.可变抽样区间的非正态EWMA均值控制图[J].系统工程,2006,24(11) :114-119. [13] Burr I W. Cumulative frequency distribution[J]. Annals of Mathematical Statistics, 1942, 13: 215-232. [14] Burr I W. Parameters for a general system of distributions to match a grid of and[J]. Communications in Statistics, 1973, 2: 1-21. [15] Dodge Y, Rousson V. The complications of the fourth central moment[J]. American Statistician, 1999, 53: 267-269. [16] Montgomery D C. Introduction to statistical quality control[M]. Fourth Edition John Wiley & Sons Inc, 2001. |