[1] Holland J H. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence[M]. The University of Michigan Press, 1975. [2] Storn R, Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-59. [3] Yao X, Liu Y, Lin G. Evolutionary programming made faster[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(2): 82-102. [4] Simon D. Biogeography-based optimization[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(6): 702-13. [5] Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies[A]. In Proceedings of the first European conference on artificial life, 1992, 142: 134-142. [6] Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[A]. International Symposium on Micro Machine and Human Science, 1995. [7] Karaboga D. An idea based on honey bee swarm for numerical optimization[R]. Technical report-tr06, Erciyes university, engineering faculty, computer engineering department, 2005. [8] Yang X S. Nature-inspired metaheuristic algorithms[M]. Luniver Press, 2008. [9] Passino K M. Biomimicry of bacterial foraging for distributed optimization and control[J]. IEEE Control Systems Magazine, 2002, 22(3): 52-67. [10] Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69(3): 46-61. [11] Mirjalili S. The ant lion optimizer[J]. Advances in Engineering Software, 2015, 83(C): 80-98. [12] Mirjalili S, Lewis A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. [13] Saremi S, Mirjalili S, Lewis A. Grasshopper optimisation algorithm: theory and application[J]. Advances in Engineering Software, 2017, 105: 30-47. [14] Mirjalili S, Gandomi A H, Mirjalili S Z, Saremi S, Faris H, Mirjalili S M. Salp swarm algorithm: a bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 114: 163-191. [15] 王梦秋,王艳,纪志成.基于改进樽海鞘群算法的PMSM多参数辨识[J].系统仿真学报,2018,30(11):4284-4291,4297. [16] 陈涛,王梦馨,黄湘松.基于樽海鞘群算法的无源时差定位[J].电子与信息学报,2018,40(7):1591-1597. [17] 刘森,贾志成,陈雷,郭艳菊.基于樽海鞘群体优化非负矩阵分解的高光谱图像解混算法[J].计算机辅助设计与图形学学报,2019,31(2):315-323. [18] 邢致恺,贾鹤鸣,宋文龙.基于莱维飞行樽海鞘群优化算法的多阈值图像分割[J/OL].自动化学报:1-15[2019-03-12].https://doi.org/10.16383/j.aas.c180140. [19] Zhang J, Wang Z H, Luo X. Parameter estimation for soil water retention curve using the salp swarm algorithm. Water, 2018, 10(6): 815. [20] Sayed G I, Khoriba G, Haggag M H. A novel chaotic salp swarm algorithm for global optimization and feature selection[J]. Applied Intelligence, 2018, 48(10): 3462-3481. [21] Yang B, Zhong L, Zhang X, Shu H, Yu T, Li H, Jiang L, Sun L. Novel bio-inspired memetic salp swarm algorithm and application to MPPT for PV systems considering partial shading condition[J]. Journal of Cleaner Production, 2019(215): 1203-1222. [22] Abbassi R, Abbassi A, Heidari A A; Mirjalili S. An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models[J]. Energy Conversion and Management, 2019(179): 362-372. [23] Faris H, Mafarja M M, Heidari A A, Aljarah L, AI-Zoubi A, Mirjalili S, Fujita H. An efficient binary salp swarm algorithm with crossover scheme for feature selection problems[J]. Knowledge-Based Systems, 2018(154): 43-67. [24] Wang J, Gao Y, Chen X. A novel hybrid interval prediction approach based on modified lower upper bound estimation in combination with multi-objective salp swarm algorithm for short-term load forecasting[J]. Energies, 2018, 11(6). [25] Aljarah I, Mafarja M, Heidari A A, Faris H, Zhang Y, Mirjalili S. Asynchronous accelerating multi-leader salp chains for feature selection[J]. Applied Soft Computing Journal, 2018(71): 964-979. [26] 龙文,蔡绍洪,焦建军,等.求解大规模优化问题的改进鲸鱼优化算法[J].系统工程理论与实践.2017,37(11):2983-2994. [27] 高维尚,邵诚,高琴.群体智能优化中的虚拟碰撞:雨林算法[J].物理学报,2013,62(19):28-43. [28] 杜永兆,范宇凌,柳培忠,唐加能,骆炎民.多种群协方差学习差分进化算法[J].电子与信息学报,2019,41(6):1488-1495. [29] Qian B, Wang L, Huang D X, Wang X. An effective hybrid DE-based algorithm for multi-objective flow shop scheduling with limited buffers[J]. Computers & Operations Research, 2009,36(1): 209-233. [30] 王凌.车间调度及其遗传算法[M].北京:清华大学出版社,2003.9-18. [31] Wolpert D H, Macready W G. No free lunch theorems for optimization[J]. IEEE Transactions on Evolutional Computation, 1997, 1(1): 67-82. |