[1] LIU M, BRYNJOLFSSON E, DOWLATABADI J. Do digital platforms reduce moral hazard? The case of Uber and taxis[J]. Management Science, 2021, 67(8): 4665-4685. [2] 席殷飞,刘钟锴,杨佩云.网约车出行需求预测方法[J].上海大学学报(自然科学版),2020,26(3):328-341. [3] 中国互联网络信息中心(CNNIC).第47次中国互联网络发展状况报告[R].2021. [4] LIU L, QIU Z, LI G, et al. Contextualized spatial-temporal network for taxi origin-destination demand prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3875-3887. [5] 熊文磊,王升,张文波.基于时空特征提取和深度学习的出行需求预测[J].武汉理工大学学报,2021,43(2):35-41+64. [6] ZHAN X, QIAN X, UKKUSURI S V. A graph-based approach to measuring the efficiency of an urban taxi service system[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(9): 2479-2489. [7] TONG Y, CHEN Y, ZHOU Z, et al. The simpler the better: A unified approach to predicting original taxi demands based on large-scale online platforms[C]//KDD’17: The 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 13-17, 2017, Halifax, NS, Canada. New York : Association for Computing Machinery, 2017: 1653-1662. [8] TANG J, LIU F, WANG Y, et al. Uncovering urban human mobility from large scale taxi GPS data[J]. Physica A: Statistical Mechanics and its Applications, 2015, 438(15): 140-153. [9] 田智慧,马占宇,魏海涛.基于密度核心的出租车载客轨迹聚类算法[J].计算机工程,2021,47(2):133-138. [10] 王璐瑶,邬岚,杨晟,等.基于D-OPTICS算法的网约车载客热点区域挖掘[J].北京航空航天大学学报,2023,49(11):3124-3131. [11] LIAO S, ZHOU L, DI X, et al. Large-scale short-term urban taxi demand forecasting using deep learning[C]//2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC), January 22-25, 2018, Jeju, Korea (South). New York: IEEE, 2018: 428-433. [12] XU J, RAHMATIZADEH R, BÖLÖNI L, et al. Real-time prediction of taxi demand using recurrent neural networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 19(8): 2572-2581. [13] 陈凯杰,唐振鹏,吴俊传,等.基于分解-集成和混频数据采样的中国股票市场预测研究[J].系统工程理论与实践,2022(11):3105-3120. [14] ER M J, ZHANG Y, WANG N, et al. Attention pooling-based convolutional neural network for sentence modelling[J]. Information Sciences, 2016(373): 388-403. [15] 那日萨,孔茸,高欢.基于深度学习的直觉模糊集隶属度确定方法[J].运筹与管理,2022,31(2):92-98. [16] 魏若楠,江驹,徐海燕.基于LSTM-GA混合模型的患者预约排队策略优化[J].运筹与管理,2022,31(3):17-23. [17] 国显达,那日萨,崔少泽.基于CNN-BiLSTM的消费者网络评论情感分析[J].系统工程理论与实践,2020,40(3):653-663. [18] 段宗涛,张凯,杨云.基于深度CNN-LSTM-ResNet组合模型的出租车需求预测[J].交通运输系统工程与信息,2018,18(4):215-223. [19] 高明,刘超,唐加福,等.基于注意力神经网络的燃料电池寿命衰减预测[J].中国管理科学,2023,31(3):155-166. [20] 景楠,史紫荆,舒毓民.基于注意力机制和CNN-LSTM模型的沪铜期货高频价格预测[J/OL].中国管理科学,2020:1-13[2022-05-06]. https://doi.org/10.16381/j.cnki.issn1003-207x.2020.0342. |