[1] 中华人民共和国工业和信息化部.《“十四五”促进中小企业发展规划》[EB/OL]. (2021-12-17)[2023-12-20].https://www.miit.gov.cn/jgsj/qyj/wjfb/art/2021/art_4e55cd85ee7b4471adcdba33e7880fe2.html. [2] 白雪鹏,赵志冲.似然函数视角下小企业信用风险最优评价指标体系的建立[J].运筹与管理,2023,32(4):155-161+183. [3] MALDONADO S, BRAVO C, LOPEZ J, et al. Integrated framework for profit-based feature selection and SVM classification in credit scoring[J]. Decision Support Systems, 2017, 104: 113-121. [4] 陈艺云.基于文本信息的上市中小企业财务困境预测研究[J].运筹与管理,2022,31(4):136-143. [5] 李刚,张亚京,王基凡,等.基于Wilcoxon检验的小型工业企业债信评级模型及实证[J].管理评论,2019,31(11):3-19. [6] ASENCIOS R, ASENCIOS C, RAMOS E. Profit scoring for credit unions using the multilayer perceptron, XGBoost and TabNet algorithms: Evidence from Peru[J]. Expert Systems with Applications, 2023, 213: 119201. [7] ARORA N, KAUR P D. A Bolasso based consistent feature selection enabled random forest classification algorithm: An application to credit risk assessment[J]. Applied Soft Computing, 2020, 86: 105936. [8] LI A D, HE Z, WANG Q, et al. Key quality characteristics selection for imbalanced production data using a two-phase bi-objective feature selection method[J]. European Journal of Operational Research, 2019, 274(3): 978-989. [9] VIDGEN R, SHAW S, GRANT D B. Management challenges in creating value from business analytics[J]. European Journal of Operational Research, 2017, 261(2): 626- 639. [10] I·Ç Y T. A multi-objective credit evaluation model using MOORA method and goal programming[J]. Arabian Journal for Science and Engineering, 2020, 45(3): 2035-2048. [11] ROY P K, SHAW K. A credit scoring model for SMEs using AHP and TOPSIS[J]. International Journal of Finance & Economics, 2021, 28(1): 372-391. [12] SHEN F, MA X S, LI Z Y, et al. An extended intuitionistic fuzzy TOPSIS method based on a new distance measure with an application to credit risk evaluation[J]. Information Sciences, 2018, 428: 105-119. [13] 孟斌,杨越,刁姝杰.基于显著区分两类客户的小型建筑企业信用评价模型研究[J].系统工程理论与实践,2019,39(2):346-359. [14] DAHOOIE J H, HAJIAGHA S H R, FARAZMEHR S, et al. A novel dynamic credit risk evaluation method using data envelopment analysis with common weights and combination of multi-attribute decision-making methods[J]. Computers & Operations Research, 2021, 129: 105223. [15] 陈晓红,杨志慧.基于改进模糊综合评价法的信用评估体系研究—以我国中小上市公司为样本的实证研究[J].中国管理科学,2015,23(1):146-153. [16] DASTILE X, CELIK T, POTSANE M. Statistical and machine learning models in credit scoring: A systematic literature survey[J]. Applied Soft Computing, 2020, 91: 106263. [17] HE H R, WANG Z, JAIN H, et al. A privacy-preserving decentralized credit scoring method based on multi-party information[J]. Decision Support Systems, 2023, 166: 113910. [18] LAGASIO V, BROGI M, GALLUCCI C, et al. May board committees reduce the probability of financial distress? A survival analysis on Italian listed companies[J]. International Review of Financial Analysis, 2023, 87: 102561. [19] MA H D, LI G, LIU R Y, et al. Research on credit scoring method matching the probability of default: Evidence from Lending Club[J]. Applied Economics, 2023, 55(50): 5864-5877. [20] KURTCAN B D, OZCAN T. Predicting customer churn using grey wolf optimization-based support vector machine with principal component analysis[J]. Journal of Forecasting, 2023, 42(6): 1329-1340. [21] CHANG Y C, CHANG K H, WU G J. Application of eXtreme gradient boosting trees in the construction of credit risk assessment models for financial institutions[J]. Applied Soft Computing, 2018, 73: 914-920. [22] 鲁皓,韦怡,焦柳丹.基于GA-BP神经网络的信用卡贷后风险评级模型与实证[J].运筹与管理,2023,32(6):192-198. [23] 徐鲲,李莹,鲍新中.考虑文本情感特征的电商小微企业信用风险预警[J].运筹与管理,2023,32 (12):195-201. [24] 衣柏衡,朱建军,李杰.基于改进SMOTE的小额贷款公司客户信用风险非均衡SVM分类[J].中国管理科学,2016,24(3):24-30. [25] WU D S, MA X Y, OLSON D L. Financial distress prediction using integrated Z-score and multilayer perceptron neural networks[J]. Decision Support Systems, 2022, 159: 113814. [26] CHEN T Q, GUESTRIN C. XGBoost: A scalable tree boosting system[C]//The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 13-17, 2016, San Francisco, USA. New York: Association for Computing Machinery, 2016: 785-794. [27] ZHOU H F, ZHANG J W, ZHOU Y Q, et al. A feature selection algorithm of decision tree based on feature weight[J]. Expert Systems with Applications, 2021, 164: 113842. [28] 石宝峰,王静,迟国泰.普惠金融、银行信贷与商户小额贷款融资—基于风险等级匹配视角[J].中国管理科学,2017,25(9):28-36. [29] Basel Committee on Banking Supervision. B-II: International Convergence of Capital Measurement and Capital Standards: A Revised Framework—Comprehensive Version[EB/OL]. (2006-06-02)[2023-12-20]. https://www.bis.org/publ/bcbsca.htm. |