[1] 伏玉笋,杨根科.无线超可靠低时延通信:关键设计分析与挑战[J].通信学报,2020,8(17):187-203. [2] 汪晗,刁磊,王梦玲,等.工业物联网中URLLC的关键问题分析[J].电信科学,2022,38(S1):77-92. [3] 余雪勇,黄欣.基于无人机通信的蜂窝网流量卸载研究[J].南京邮电大学学报:自然科学版,2020,40(4):21-27. [4] ANAND A, VECLANA G D, SHAKKOTTAI S. Joint scheduling of URLLC and traffic in 5G wireless networks[J]. IEEE/ACM Transactions on Networking, 2020, 28(2): 477- 490. [5] ALSENWI M, TRAN N H, BENNIS M, et al. EMBB-URLLC resource slicing: A risk-sensitive approach[J]. IEEE Communications Letters, 2019, 23(4): 740-743. [6] KASGARI A, SAAD W. Model-free ultra reliable low latency communication: A deep reinforcement learning framework[C]//IEEE International Conference on Communications, May 20-24, 2019, Shanghai, China. New York: IEEE, 2019: 34-53. [7] 李安,戴龙斌,余礼苏,等.加权能耗最小化的无人机辅助移动边缘计算资源分配策略[J].电子与信息学报,2022,44(11):3858-3865. [8] 樊凌雁,燕武,陈晞涵.一种低传输能耗的无人机数据传输设计[J].电子学报,2021,49(3):573-577. [9] ZHAN C, ZENG Y, ZHANG R. Energy-efficient data collection in UAV enabled wireless sensor network[J]. IEEE Wireless Communication Letters, 2017, 7(3): 328-331. [10] POLYANSKIY Y, POOR H V, VERDU S. Channel coding rate in the finite block length regime[J]. IEEE Transactions on Information Theory, 2010, 56(5): 2307-2359. [11] SHE C Y, SUN C J, GU Z Y, et al. A tutorial on ultrareliable and low-latency communications in 6G: Integrating domain knowledge into deep learning[J]. Proceedings of the IEEE, 2021, 109(3): 204-246. [12] 王金甲,张玉珍,夏静,等.多层局部块坐标下降法及其驱动的分类重构网络[J].自动化学报,2020,46(12):2647-2661. [13] 周贤正,郭创新,陈玮,等.基于混合整数二阶锥的配电气网联合规划[J].电力自动化设备,2019,39(6):6-16. [14] XU L Y, CHEN M, CHEN M Z, et al. Joint location, bandwidth and power optimization for THz-enabled UAV Communications[J]. IEEE Communications Letters, 2021, 25(6): 1984-1988. [15] 田中大,李树江,王艳红,等.高斯过程回归补偿ARIMA的网络流量预测[J].北京邮电大学学报,2017,40(6):65-73. [16] 黄亚,易灵,肖伟华,等.基于高斯过程回归模型的径流短期预测研究[J].水力发电,2020,46(12):9-12. |