运筹与管理 ›› 2013, Vol. 22 ›› Issue (5): 166-172.

• 应用研究 • 上一篇    下一篇

基于混合模型的原油价格混沌预测方法

张金良, 谭忠富   

  1. 华北电力大学 经济与管理学院,北京 102206
  • 收稿日期:2012-08-22 出版日期:2013-10-25
  • 作者简介:张金良(1981-),男,讲师;谭忠富(1964-),男,教授,博导。
  • 基金资助:
    国家自然科学基金资助项目(71201056,71071053);中央高校基本科研业务费专项资金资助

Crude Oil Price Chaotic Forecasting Method Based on Hybrid Model

ZHANG Jin-liang, TAN Zhong-fu   

  1. School of Economics and Management, North China Electric Power University, Beijing 102206, China
  • Received:2012-08-22 Online:2013-10-25

摘要: 针对原油现货价格的非线性和时变性特征,提出一种小波变换结合Elman神经网络和广义自回归条件异方差(GARCH)模型的混沌预测方法。首先利用小波变换将原油现货价格序列分解和重构成概貌序列和细节序列。其次对概貌序列和原油期货价格序列进行相空间重构,建立Elman神经网络的混沌时间序列模型预测概貌序列的未来值;同时以细节序列为历史数据,构建GARCH模型预测细节序列的未来值;最后将概貌序列和细节序列的未来值求和作为最终的预测值。实验证明该方法能够提供更准确的预测结果。

关键词: 管理科学与工程, 混沌预测, 混合模型, 原油现货价格

Abstract: Due to the characteristics of crude oil spot price, such as non-linear, time-varying, this paper proposes a new chaotic prediction approach based on wavelet transform, Elman neural network and Generalized Autoregressive Conditional Heteroskedastic model. Firstly, the crude oil spot price series is decomposed and reconstructed into approximate series and detailed series. Secondly, the phase space of approximate series and crude oil futures price series are reconstructed. Then, the approximate future values are predicted by chaotic time series model based on Elman neural network. While the detailed future values are forecasted by GARCH model, using the detailed series as historical data. Finally, the sum of the approximate and detailed future values is used as the final forecasting values. The example indicates that the proposed method can provide more accurate forecasted results.

Key words: management science and engineering, chaotic prediction, hybrid model, crude oil spot price

中图分类号: