[1] BLACK F, SCHOLES M S. The pricing of option and corporate liabilities[J]. Journal of Political Economy, 1973, 81(3): 637-654. [2] BOYLE P P, EMANUEL D. Discretely adjusted option hedges[J]. Journal of Financial Economics, 1980, 8(3): 259-282. [3] LELAND H E. Option pricing and replication with transactions costs[J]. The Journal of Finance, 1985, 40(5): 1283-1301. [4] WHALLEY A E, WILMOTT P. An asymptotic analysis of an optimal hedging model for option pricing with transaction costs[J]. Mathematical Finance, 2010(4): 307-324. [5] LEPINETTE E. Modified Leland's strategy for a constant transaction costs rate[J]. Mathematical Finance, 2012, 22(4): 741-752. [6] WANG X T, ZHAO Z F, FANG X F. Option pricing and portfolio hedging under the mixed hedging strategy[J]. Physica A: Statistical Mechanics & its Applications, 2015, 424(C): 194-206. [7] WANG W. Asymptotic analysis for hedging errors in models with respect to geometric fractional Brownian motion[J]. Stochastics, 2018, 4(1): 1-26. [8] GARMAN M B, KOHLHAGEN S W. Foreign currency option values[J]. Journal of International Money and Finance, 1983, 2(3): 231-237. [9] HULL J, WHITE A. Hedging the risks from writing foreign currency options[J]. Journal of International Money & Finance, 1987, 6(2): 131-152. [10] 彭程,李爽,包莹,等.外汇欧式期权在市场不完备下的对冲误差分析[J].系统工程理论与实践,2019,39(11):19-29. [11] CONT R. Empirical properties of asset returns: Stylized facts and statistical issues[J]. Quantitative Finance, 2001, 1(2): 223-236. [12] 陈强,郑旭,林小强.中国股市与股指期市的对冲表现及市场非完备性[J].系统工程理论与实践,2013,33(11):2734-2745. [13] 陈荣达.基于汇率回报厚尾性的外汇期权定价模型[J].运筹与管理,2006,15(3):137-140. [14] PETERS E E. Fractal structure in capital markets[J]. Financial Analysts Journal, 1989, 45(4): 32-37. [15] DUNCAN T E, HU Y Z, PASIKDUNCAN B. Stochastic calculus for fractional Brownian motion I: Theory[J]. SIAM Journal on Control and Optimization, 2000, 38(2): 582-612. [16] HU Y, KSENDAL B. Fractional white noise calculus and applications to finance[J]. Infinite Dimensional Analysis, Quantum Probability & Related Topics, 2003, 6(1): 1-32. [17] NECULA C. Option pricing in a fractional Brownian motion environment[J]. Advances in Economic and Financial Research—Dofin Working Paper Series, 2008, 2(3): 259-273. [18] 许莉莉,吴自力.分形布朗运动下有交易成本的外汇期权定价[J].经济数学,2012,29(3):64-69. [19] 孙琳.分数布朗运动下带交易费用的期权定价[J].系统工程,2009,27(9):3-5. [20] 金中夏,陈浩. 利率平价理论在中国的实现形式[J].金融研究,2012,6(7):63-74. [21] 易纲,范敏.人民币汇率的决定因素及走势分析[J].经济研究,1997,10(10):26-35. [22] 方艳,张元玺,乔明哲.上证50ETF期权定价有效性的研究:基于B-S-M模型和蒙特卡罗模拟[J].运筹与管理,2017,26(8):157-166. [23] 陈荣达.基于有效Monte Carlo模拟的外汇期权组合非线性VaR模型[J].运筹与管理,2010,19(1):106-112. |