[1] Robert C Merton. An analytic derivation of the cost of deposit insurance and loan guarantee[J]. Journal of Banking and Finance, 1997, 35(1): 3-11. [2] Alan J. Marcus and israle shaked. the valuation of FDIC deposit insurance using option-pricing estimates[J]. Journal of Money,Credit and Banking 1984, 11(2): 4-46. [3] Ehud Ronn I, Avinash Verma L. Pricing risk-adjusted deposit insurance: an option-based model[J]. Journal of Finance, 1986, 41(4): 871-895. [4] Shih-Cheng Lee, Jin-Ping Lee, Min-Teh Yu. Bank capital forbearance and valuation of deposit insurance[J]. Canadian Journal of Administrative Sciences, 2005, 22(3): 220-229. [5] 岳金枝,等.考虑所得税的银行存款溢额再保险定价研究[J].曲阜师范大学学报,2017,(2):9-11. [6] Duncan T E, Hu Y, Duncan P B. Stochastic calculus for fractional brownian motion i: theory[J]. SIAM Journal Control Optim, 2000, 38(2): 582-612. [7] Necula C. Option pricing in brownian motion environment[R].Working Paper of the Academy of Economic Studies, Bu-charest, 2002, 27(4): 8079-8089. [8] Tudor C A, Xiao Y M. Samplepath properties of bifractional brownian imotion[J]. Bernoulli, 2007, 13(4): 1023-1052. [9] 张卫国,肖炜麟,等.分数布朗运动下欧式汇率期权的定价[J].系统工程理论与实践,2009,29(6):68-76. [10] Lin S J. Stochastic analysis of fractional brownian motion[J]. Stochastics and Stochastics Reports, 1995, 55: 122-140. [11] Bjork Hulth T. A note on wick products and the fractional Black-Scholes model[J]. Finance and Stochastics, 2005, 9(2): 197-209. [12] 徐峰,郑石秋.混合分数布朗运动驱动的幂期权定价模型[J].经济数学,2010,27(2):8-12. [13] 张杰,陈宗新,马海燕.混合双分数布朗运动环境下违约概率的动态研究[J].赤峰学院学报(自然科学版),2016,32(2):26-27. [14] 熊文凯.基于混合分数布朗运动模型的欧式期权定价研究[D].华中师范大学学报,2015,4(3):56-60. |