[1] SHAPIRO A, DENTCHEVA D, RUSZCZYNSKI A. Lectures on Stochastic Programming: Modeling and Theory[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2021. [2] DELAGE E, YE Y. Distributionally robust optimization under moment uncertainty with application to data-driven problems[J]. Operations Research, 2010, 58(3): 592-612. [3] NGUYEN V A, KUHN D, ESFAHANI P M. Distributionally robust inverse covariance estimation: The Wasserstein shrinkage estimator[J]. Operations Research, 2022, 70(1): 490-515. [4] SHAPIRO A. Distributionally robust stochastic programming[J]. SIAM Journal on Optimization, 2017, 27(4): 2258-2275. [5] ESFAHANI P M, KUHN D. Data-driven distributionally robust optimization using the Wasserstein metric: Performance guarantees and tractable reformulations[J]. Mathematical Programming, 2018, 171(1-2): 115-166. [6] LUO F, MEHROTRA S. Decomposition algorithm for distributionally robust optimization using Wasserstein metric with an application to a class of regression models[J]. European Journal of Operational Research, 2019, 278(1): 20-35. [7] JIN X, LIU B, LIAO S, et al. A Wasserstein metric-based distributionally robust optimization approach for reliable-economic equilibrium operation of hydro-wind-solar energy systems[J]. Renewable Energy, 2022, 196: 204-219. [8] TASKESEN B, SHAFIEEZADEH-ABADEH S, KUHN D. Semi-discrete optimal transport: Hardness, regularization and numerical solution[J]. Mathematical Programming, 2023, 199(1-2): 1033-1106. [9] NGUYEN V A, SHAFIEE S, FILIPOVIĆ D, et al. Mean-covariance robust risk measurement[J/OL]. arXiv, 2023: 2112.09959v2[2024-08-11]. https://arxiv.org/pdf/2112.09959v2. [10] CHEN R, PASCHALIDIS I C. A distributionally robust optimization approach for outlier detection[C]//2018 IEEE Conference on Decision and Control (CDC), December 17-19, 2018,Miami Beach, FL, USA. IEEE, 2018: 352-357. [11] SHAFIEEZADEH-ABADEH S, ESFAHANI P M, KUHN D. Distributionally robust logistic regression[J]. Advances in Neural Information Processing Systems, 2015, 28: 1576-1584. [12] CHEN R, PASCHALIDIS I C. A robust learning approach for regression models based on distributionally robust optimization[J]. Journal of Machine Learning Research, 2018, 19(13): 1-48. [13] SHAFIEEZADEH-ABADEH S, KUHN D, ESFAHANI P M. Regularization via mass transportation[J/OL]. Journal of Machine Learning Research, 2019, 20: 1-68[2023-05-10].https://www.jmlr.org/papers/volume20/17-633/17-633.pdf. [14] KUHN D, ESFAHANI P M, NGUYEN V A, et al. Wasserstein distributionally robust optimization: Theory and applications in machine learning[J/OL]. arXiv, 2024: 1908.08729v2[2025-03-10]. https://arxiv.org/pdf/1908.08729v2. [15] CORTEZ P, CERDEIRA A, ALMEIDA F, et al. UCI Machine Learning Repository: Wine Quality[DB/OL]. Irvine CA: University of California, School of Information and Computer Science, 2013.(2009-06-09)[2023-06-01]. http://doi.org/10.24432/C56S3T. |