[1] CHEN H. Macroeconomic conditions and the puzzles of credit spreads and capital structures[J]. The National Bureau of Economic Research, 2010, 65(6) : 2171-2212. [2] HE Z, XIONG W. Rollover risk and credit risk[J]. Journal of Finance, 2012, 67(2): 391-429. [3] CHEN H, CUI R, HE Z G, et al. Quantifying liquidity and default risks of corporate bonds over the business cycle[J]. Review of Financial Studies, 2018, 31(3): 852-897. [4] TIAN K, XIONG D, YAN W, et al. The study of dynamics for credit default risk by backward stochastic differential equation method[J]. International Journal of Financial Engineering, 2018, 5(4): 1-32. [5] JAVADI S, KIM S , KREHBIEL T, et al. Measuring correlated default risk: a new metric and validity tests[J]. The Journal of Fixed Income, 2017, 27 (2): 6-29. [6] 牛华伟.代理成本与“信用价差之谜”[J].管理科学学报,2016,19(8):54-66. [7] 谭地军,田益祥,黄文光. 中国企业债券特征和风险补偿[J].数量经济技术经济研究,2008,25(2):74-87. [8] 张发明.一种融合SOM与K-means算法的动态信用评价方法及应用[J].运筹与管理,2014,23(6):186-192. [9] GIESECKE K, LONGSTAFF F A, SCHAEFER S M, et al. Macroeconomic effects of corporate default crises: a long-term perspective[J]. Journal of Financial Economics, 2014, 111(2): 297-310. [10] AZIZPOUR S, GIESECKE K, SCHWENKLER G. Exploring the sources of default clustering[J]. Journal of Financial Economics, 2018, 129(1): 154-183. [11] 艾春荣,张奕,崔长峰.债券流动性与违约风险相关性溢价及实证研究[J].管理科学学报,2015,18(5):87-94. [12] 蒋书彬.违约发债主体财务指标特征研究[J].债券,2016(6):41-47. [13] 张春强,鲍群,盛明泉.公司债券违约的信用风险传染效应研究——来自同行业公司发债定价的经验证据[J].经济管理,2019(1):174-190. [14] LYU H, YANG C. Regulatory capital constraint and its effects on price discrimination and default risk: evidence from China's bond market[J]. Emerging Markets Finance and Trade, 2019, 55 (3): 584-612. [15] 胡蝶.基于随机森林的债券违约分析[J].当代经济,2018(3):28-30. [16] HAN S, ZHOU X. Informed bond trading, corporate yield spreads, and corporate default prediction[J]. Management Science, 2014, 60(3): 675-694. [17] TRACZYNSKI J. Firm default prediction: a bayesian model-averaging approach[J]. Journal of Financial and Quantitative Analysis, 2017, 52(3): 1211-1245. [18] MIAO H ,RAMCHANDER S, RYAN P, et al. Default prediction models: the role of forward-looking measures of returns and volatility[J]. Journal of Empirical Finance, 2018, 46: 146-162. [19] SIGRIST F, HIRNSCHALL C. Grabit: gradient tree-boosted tobit models for default prediction[J]. Journal of Banking & Finance, 2019, 102: 177-192. [20] JIANG C X, XIONG W, XU Q F, et al. Predicting default of listed companies in mainland China via U-MIDAS Logit model with group lasso penalty[J]. Finance Research Letters, 2021, 38: 101487. [21] BEAVER W H, CASCINO S, CORREIA M, et al. Group affiliation and default prediction[J]. Management Science,2019, 68(8): 3359-3584. [22] GUERTLER M, HIBBELN M T, USSELMANN P. Exposure at default modeling-a theoretical and empirical assessment of estimation approaches and parameter choice[J]. Journal of Banking & Finance, 2018, 91: 176-188. [23] ABELLÁN J, MANTAS C J. Improving experimental studies about ensembles of classifiers for bankruptcy prediction and credit scoring[J]. Expert Systems with Applications, 2014, 41(8): 3825-3830. [24] 周荣喜,彭航,李欣宇,等.基于XGBoost算法的信用债违约预测模型[J].债券,2019(10):61-68. |