[1] Crook J N, Edelman D B, Thomas L C. Recent developments in consumer credit risk assessment[J]. European Journal of Operational Research, 2007, 183(3): 1447-1465. [2] Orgler Y E. A credit scoring model for commercial loans[J]. Journal of Money, Credit and Banking, 1970, 2(4): 435-445. [3] 刘京礼,李建平,徐伟宣,石勇.信用评估中的鲁棒赋权自适应Lp最小二乘支持向量机方法[J].中国管理科学,2010,5:28-33. [4] Chang S Y, Yeh T Y. An artificial immune classifier for credit scoring analysis[J]. Applied Soft Computing, 2012, 12(2): 611-618. [5] 肖智,李文娟.RS-ANN在消费信贷个人信用评估中的实证研究[J].软科学,2011,25(4):141-144. [6] West D, Dellana S, Qian J. Neural network ensemble strategies for financial decision applications[J]. Computers & Operations Research, 2005, 32: 2543-2559. [7] Haibo H, Garcia E. Learning from imbalanced data[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1263-1284. [8] Sun Y, Wong A, Kamel M, Classification of imbalanced data: a review[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2009, 23(4): 687-719. [9] Chawla N V, Bowyer K W, Hall L O, Kegelmeyer W P. SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357. [10] 吴冲,夏晗.基于支持向量机集成的电子商务环境下客户信用评估模型研究[J].中国管理科学,2008,S1. [11] Yang Y. Adaptive credit scoring with kernel learning methods[J]. European Journal of Operational Research, 2007, 183(3): 1521-1536. [12] Skinner B F. Science and human behavior[M]. Colliler-Macmillian, 1953. [13] Thrun S. Is learning the N-th thing any easier than learning the first?[C]. In: Proc. of NIPS-96, 1996. 640-646. [14] Baxter J. A Bayesian/information theoretic model of learning to learn via multiple task sampling[J]. Machine Learning, 1997, 28(1): 7-39. [15] Caruana R. Multitask learning[J]. Machine Learning, 1997, 28 : 41-75. [16] Ben-David S, Schuller R. Exploiting task relatedness for multiple task learning[C]. In: Proc. 16th Annual Conference on Computational Learning Theory, Washington, DC, USA, 2003. [17] Mahmud M, Ray S R. Transfer learning using Kolmogorov complexity: basic theory and empirical evaluations[C]. In: Proc. of the 20th Annual Conference on Neural Information Processing Systems, Cambridge, MA: MIT Press, 2008. 985-992. [18] Pan S J, Yang Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359. [19] Dai W Y, Yang Q, Xue G R, Yu R. Boosting for transfer learning[C]. In: Proc. of the 24th International Conference on Machine Learning, ACM Press, 2007.193-200. [20] Kamishima T, Hamasaki M, Akaho S. TrBagg: A simple transfer learning method and its application to personalization in collaborative tagging[C]. In: Proc. of Ninth IEEE International Conference on Data Mining, 2009. 219-228. [21] Wang G, et al. A comparative assessment of ensemble learning for credit scoring[J]. Expert Systems with Applications, 2011, 38: 223-230. [22] Weiss G M. Mining with rarity: a unifying framework[J]. ACM SIGKDD Explorations Newsletter, 2004, 6(1): 7-19. [23] Mueller J A, Lemke F. Self-organizing data mining: an intelligent approach to extract knowledge from data[M]. Hamburg : Libri Books, Berlin, 2000. [24] Xiao J, He C Z, Jiang X Y, Liu D H. A dynamic classifier ensemble selection approach for noise data[J]. Information Science, 2010, 180(18): 3402-3421. [25] Kira K, Rendell L A. The feature selection problem: traditional methods and a new algorithm[C]. In: Proc. of Tenth National Conference on Artificial Intelligence, MIT Press, 1992. 129-134. |