[1] 成思危.诊断与治疗:揭示中国的股票市场[M].北京:经济科学出版社,2003. [2] Engle R F. Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation[J]. Econometrica, 1982, 50(4) : 987-1007. [3] Bollerslev T. Generalized autoregressive conditional heteroskedasticity[J]. Journal of Econometrics, 1986, 31(3): 307-327. [4] 吴鑫育,李心丹,马超群.门限已实现随机波动率模型及其实证研究[J].中国管理科学,2017,25(3):10-19. [5] 姬新龙,周孝华.基于马尔科夫随机波动和极值理论的风险测度[J].中国管理科学,2014,22(10):44-51. [6] Wang Y, Liu L, Gu R. Analysis of efficiency for shenzhen stock market based on multi-fractal detrended fluctuation analysis[J]. International Review of Financial Analysis, 2009, 18(5): 363-367. [7] 彭选华,傅强.基于小波多尺度分析的GARCH建模方法拓展[J].系统工程理论与实践,2011,31(11):2060-2069. [8] 李祥飞,张再生,黄超,高杨.基于EMD与STSA混合方法的金融收益信息提取与预测[J].系统工程,2014(02):138-146. [9] 侯建荣.基于小波分析极大模方法的极端金融事件风险建模问题研究[J].中国管理科学,2012, 20(9):10-19. [10] Conor N O, Madden M G. A neural network approach to predicting stock exchange movements using external factors[J]. Knowledge-based System, 2006,19 (5): 371-378. [11] 辛治运,顾明.基于最小二乘支持向量机的复杂金融时间序列预测[J].清华大学学报(自然科学版),2008,48(7):1147-1149. [12] 李祥飞,张再生,黄超.基于Hilbert-Huang变换的房地产调控政策对地产指数波动的影响作用研究[J].系统工程理论与实践,2014,34(02):1369-1378. [13] Huang N E, Shen Z, Long S R, et al.. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995. [14] Huang N E, Shen Z, Long S R. A new view of nonlinear water waves: the hilbert spectrum[J]. Annual Review of Fluid Mechanics, 1999(31): 417-457. [15] 刘禄波,罗懋康,赖莉.Hilbert-Huang变换在线性正则域的新推广[J].四川大学学报(自然科学版),2016,53(5):980-982. [16] 秦安壮,杨志勋,张明杰,武文华,张文首.基于系统响应瞬时特性的非线性系统识别[J].大连理工大学学报,2017,57(3):221-226. [17] 刘慧婷,倪志伟,李建洋.经验模态分解方法及实现[J].计算机工程与应用,2006,42(32):44-47. [18] 钟佑明,秦树人,汤宝平.希尔伯特-黄变换中边际谱的研究[J].系统工程与电子技术,2004(9):1323-1326. [19] Hui E, Wang Z. Price anomalies and effectiveness of macro control policies: evidence from chinese housing markets[J]. Land Use Policy, 2014, 39(7): 96-109. |