[1] Preston R. McAfee, John McMillan. Auctions and bidding[J]. Journal of Economic Literature, 1987, 25(2): 699-738. [2] Klemperer P. Why every economist should learn some auction theory[R]. Advances in Economics and Econometrics: Invited Lectures to 8th World Congress of the Econometric Society, M. Dewatripont, L. Hansen and S. Turnovsky (Eds.), Cambridge University Press, 2003. [3] 刘树林,王明喜.拍卖基本理论与扩展[M].北京:科学出版社,2010. [4] Gumussoy C A, Calisir F. Understanding factors affecting e-reverse auction use:an integrative approach[J]. Computers in Human Behavior,2009, 25(4): 975-988. [5] Che Y K. Design Competition through mul-tidimensional auctions[J]. RAND Journal of Economics,1993, 24(4): 668-680. [6] Branco F. The design of multidimensional auctions[J]. RAND Journal of Economics, 1997, 28(1): 63-81. [7] David E. Bidding in sealed-bid and english multi-attribute auctions[J]. Decision support system, 2006, 42(2): 527-556. [8] Bichler M. An experimental analysis of multi-attribute auctions[J]. Decision Support System, 2002, 9: 249-268. [9] 朱阁,魏晓健.多属性反向拍卖机制研究进展[J].北京信息科技大学学报(自然科学版),2016,31(2):40-49. [10] Long P, Teich J, Wallenius H, et al. Multi-attribute online reverse auctions: recent research trends[J]. European Journal of Operational Research, 2015, 242(1): 1-9. [11] 谢安石,李一军,尚维,李燕.拍卖理论的最新进展——多属性网上拍卖研究[J].管理工程学报,2006,20(3):17-21. [12] 刘树林,王明喜.多属性采购拍卖理论与应用评述[J].中国管理科学,2009,17(1):183-192. [13] 洪宗友,汪定伟.多属性招标拍卖中买卖双方的最优策略研究[J].系统工程学报,2014,29(4):458-467. [14] 孙亚辉,冯玉强.多属性密封拍卖模型及最优投标策略[J].系统工程理论与实践,2010,30(7):1185-1189. [15] Chan F T, Kumar N. Global supplier development considering risk factors using fuzzy extended AHP-based approach[J]. Omega, 2007, 35(4): 417-431. [16] Ho W, Xu X, Dey P K. Multi-criteria decision making approaches for supplier evaluation and selection: a literature review[J]. European Jour-nal of Operational Research, 2010; 202(1): 16-24. [17] Liu S L, Lai K K, Wang S Y. Multiple criteria models for evaluation of competitive bids[J]. Journal of Mathematics Applied in Business and Industry, 2000, 11(3): 151-160. [18] 谢安石,李一军.基于模糊粗糙集的多属性网上拍卖决策[J].系统管理学报,2005,14(2):182-184. [19] 秦全德,王晓晖,李荣钧.不完全偏好信息下国有企业并购多属性拍卖的模糊决策[J].管理工程学报,2012,26(4):169-175. [20] Wang J Q, Li K J, Zhang H Y. Interval-valued intuitionistic fuzzy multi-criteria decision-making approach based on prospect score function[J]. Knowledge-Based Systems, 2012, 27(3): 119-125. [21] 武刚.层次交互式多属性电子拍卖中标人选择方法[J].管理科学,2007,20(3):55-60. [22] 王建军,杨德礼.信息系统外包决策的AHP/PROMETHEE方法[J].管理学报,2006,3(3):287-291. [23] 张晓,樊治平.基于前景理论的风险型混合多属性决策方法[J].系统工程学报,2012,27(6):772-781. [24] 糜万俊,戴跃伟.基于前景理论的风险型混合模糊多准则群决策[J].控制与决策,2017,32(7):1279-1285. [25] Huang M, Qian X, Fang S C, Wang X. Winner determination for risk aversion buyers in multi-attribute reverse auction[J]. Omega, 2016, 59(part B): 184-200. [26] 龚承柱,李兰兰,卫振锋,等.基于前景理论和隶属度的混合型多属性决策方法[J].中国管理科学,2014,22(10):122-128. [27] Kahneman D, Tversky A. Prospect theory: an analysis of decision under risk[J]. Econometrica, 1979, 47(2): 263-292. [28] Tversky A, Kahneman D. Advances in prospect theory: cumulative representation of uncertainty[J]. Journal of Risk and Uncertainty, 1992, 5(4): 297-323. [29] 代文锋,仲秋雁,齐春泽.基于前景理论和三角模糊MULTIMOORA的多阶段决策方法[J].运筹与管理,2018,27(3):74-81. [30] Wang Y M, Luo Y. Integration of correlations with standard deviations for determining attribute weights in multiple attribute decision making[J]. Mathematical & Computer Modelling, 2010, 51(1): 1-12. [31] Weber C A, Current J R, Benton W C. Vendor selection criteria and methods[J]. European Journal of Operational Research, 1991, 50(1): 2-18. [32] 陈晓红,阳熹.一种基于三角模糊数的多属性群决策方法[J].系统工程与电子技术,2008,30(2):278-282. [33] Qin Q, Liang F, Li L, et al. A TODIM-based multi-criteria group decision making with tri-angular intuitionistic fuzzy numbers[J]. Applied Soft Computing, 2017, 55: 93-107. [34] Oike Y, Ikeda M, Asada K. A high-speed and low-voltage associative co-processor with exact Hamming/Manhattan-distance estimation using word-parallel and hierarchical search architecture[J]. IEEE Journal of Solid-State Circuits, 2004, 39(8): 1383-1387. [35] Lin T T,Tsai S C, Tzeng W G. Permutation arrays under the Chebyshev distance[J]. IEEE Transactions on Information Theory, 2010, 56(6): 2611-261. |