[1] Miao Z C, Chen K, Feng Y, et al. Cost-effective online trending topic detection and popularity prediction in microblogging[J]. Acm Transactions on Information Systems, 2016, 35(3): 1-36. [2] Chen Q, Guo X, Bai H X. Semantic-based topic detection using Markov decision processes[J]. Neurocomputing, 2017, 242(C): 40-50. [3] Indra I, Winarko E, Pulungan R. Trending topics detection of indonesian tweets using BN-grams and doc-p[J]. Journal of King Saud University-Computer and Information Sciences, 2019, 31(2): 266-274. [4] Winatmoko Y A, Khodra M L. Automatic summarization of tweets in providing indonesian trending topic explanation[J]. Procedia Technology, 2013,11(1): 1027-1033. [5] 傅立伟,武森.基于属性值集中度的分类数据聚类有效性内部评价指标[J].工程科学学报,2019,41(5):682-693. [6] 游丹丹,陈福集.我国网络舆情热点话题发现研究综述[J].现代情报,2017,37(3):165-171. [7] Gupta C, Grossman R L. GenIc: a single pass generalized incremental algorithm for clustering[C]. SIAM International Conference on Data Mining, Florida, 2004. 147-153. [8] Huang B, Yang Y, Mahmood A, et al. Microblog topic detection based on LDA model and single-pass clustering[C]. International Conference on Rough Sets and Current Trends in Computing. Springer, Berlin, Heidelberg, 2012. 166-171. [9] Forestiero A, Pizzuti C, Spezzano G. A single pass algorithm for clustering evolving data streams based on swarm intelligence[J]. Data Mining & Knowledge Discovery, 2013, 26(1): 1-26. [10] 格桑多吉,乔少杰,韩楠,等.基于Single-Pass的网络舆情热点发现算法[J].电子科技大学学报,2015,4:599-604. [11] 方星星,吕永强.基于改进的single-pass网络舆情话题发现研究[J].计算机与数字工程,2014,7:1233-1237. [12] Ai W, Li D P. Parallelizing hot topic detection of microblog on spark[C]. International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery. IEEE, Changsha, 2016. 1461-1468. [13] 马雯雯,魏文晗,邓一贵.基于隐含语义分析的微博话题发现方法[J].计算机工程与应用,2014,50(1):96-100. [14] 路荣,项亮,刘明荣,等.基于隐主题分析和文本聚类的微博客中新闻话题的发现[J].模式识别与人工智能,2012,25(3):382-387. [15] 杨菲,黄柏雄.词共现网络的遗传聚类在话题发现中的应用[J].计算机工程与应用,2013,49(14):126-129. [16] 马慧芳,吉余岗,李晓红,等.基于离散粒子群优化的微博热点话题发现算法[J].计算机工程,2016,42(3):208-213. [17] 黄敏.网络舆情热点挖掘算法研究与实现[J].安徽大学学报(自科版),2012,36(6):67-72. [18] Ai W, Li K L, Li K Q. An effective hot topic detection method for microblog on spark[J]. Applied Soft Computing, 2018, 70: 1010-1023. [19] Chen P X, Zhang N L, Liu T F, et al. Latent tree models for hierarchical topic detection[J]. Artificial Intelligence, 2017, 250: 105-124. [20] Akbas C E, Günay O, Ta?demir K, et al. Energy efficient cosine similarity measures according to a convex cost function[J]. Signal Image & Video Processing, 2016, 11(2): 1-8. [21] Sarwar B, Karypis G, Konstan J, et al. Item-based collaborative filtering recommendation algorithms[C]. International Conference on World Wide Web. ACM, Hong Kong, 2001. 285-295. [22] Nguyen H V, Bai L. Cosine similarity metric learning for face verification[C]. Asian Conference on Computer Vision, Queenstown, 2010, 6493: 709-720. [23] Xia P P, Zhang L, Li F Z. Learning similarity with cosine similarity ensemble[J]. Information Science, 2015, 307: 39-52. [24] Sohangir S, Wang D D. Improved sqrt-cosine similarity measurement[J]. Journal of Big Data, 2017, 4: 25. [25] Li B L, Han L P. Distance weighted cosine similarity measure for text classification[C]. International Conference on Intelligent Data Engineering and Automated Learning, Hefei, 2013, 8206: 611-618. [26] Zhu S Z, Liu L Z, Wang Y. Information retrieval using Hellinger distance and sqrt-cos similarity[C]. International Conference on Computer Science & Education. IEEE, Melbourne, 2012. 925-929. [27] Rousseeuw P J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis[J]. Journal of Computational and Applied Mathematics, 1987, 20: 53-65. [28] Gao X N, Wu S. CUBOS: an internal cluster validity index for categorical data[J]. Tehnicki Vjesnik-Technical Gazette, 2019, 26(2): 486-494. |