[1] 孔东民,李捷瑜,邢精平,等.投资组合的行业集中度与基金业绩研究[J].管理评论,2010,22(4):17-25. [2] Andersen T G, Bollerslev T. Answering the skeptics: yes, standard volatility models do provide accurate forecasts[J]. International Economic Review, 1998, 39(4): 885-905. [3] Hansen P R, Huang Z, Shek H H. Realized garch: a joint model for returns and realized measures of volatility[J]. Journal of Applied Econometrics, 2012, 27(6): 877-906. [4] Corsi F. A simple approximate long-memory model of realized volatility[J]. Journal of Financial Econometrics, 2009, 7(2): 174-196. [5] 瞿慧,李洁,程昕.HAR族模型与GARCH族模型对不同期限波动率的预测精度比较——基于沪深300指数高频价格的实证分析[J].系统工程,2015,(3):32-37. [6] Louzis D P, Xanthopoulos-Sisinis S, Refenes A P. Realized volatility models and alternative value-at-risk prediction strategies[J]. Economic Modelling, 2014, 40: 101-116. [7] 黄友珀,唐振鹏,唐勇.基于藤copula-已实现GARCH的组合收益分位数预测[J].系统工程学报,2016,31(1):45-54. [8] 唐振鹏,黄友珀,许雅妮.利用高频数据和copula度量资产组合市场风险:建模与实证[J].运筹与管理,2016,25(5):174-179. [9] Barndorff-Nielsen O E, Shephard N. Power and bipower variation with stochastic volatility and jumps[J]. Journal of Financial Econometrics, 2004, 2(1): 1-37. [10] Andersen T G, Bollerslev T, Diebold F X. Roughing it up: including jump components in the measurement, modeling and forecasting of return volatility[J]. The Review of Economics and Statistics, 2007, 89(4): 701-720. [11] Huang X, Tauchen G. The relative contribution of jumps to total price variance[J]. Journal of Financial Econometrics, 2005, 3(4): 456-499. [12] Patton A J, Sheppard K. Good volatility, bad volatility: signed jumps and the persistence of volatility[J]. Review of Economics and Statistics, 2015, 97(3): 683-697. [13] 马锋,魏宇,黄登仕,等.基于跳跃和符号跳跃变差的HAR-RV预测模型及其MCS检验[J].系统管理学报,2015,24(5):700-710. [14] Joe H. Families of m-variate distributions with given margins and m(m-1)/2 bivariate dependence parameters[J]. Lecture Notes-Monograph Series, 1996, 28: 120-141. [15] Bedford T, Cooke R M. Probability density decomposition for conditionally dependent random variables modeled by vines[J]. Annals of Mathematics and Artificial Intelligence, 2001, 32(1-4): 245-268. [16] Bedford T, Cooke R M. Vines-a new graphical model for dependent random variables[J]. Annals of Statistics, 2002, 30(4): 1031-1068. [17] Aas K, Czado C, Frigessi A, et al. Pair-copula constructions of multiple dependence[J]. Insurance: Mathematics and Economics, 2009, 44(2): 182-198. [18] 张高勋,田益祥,李秋敏.基于Pair Copula模型的资产组合VaR比较研究[J].系统管理学报,2013,(2):223-231. [19] Dißmann J, Brechmann E C, Czado C, et al. Selecting and estimating regular vine copulae and application to financial returns[J]. Computational Statistics & Data Analysis, 2013, 59: 52-69. [20] 马锋,魏宇,黄登仕.基于vine copula方法的股市组合动态VaR测度及预测模型研究[J].系统工程理论实践,2015,35(1):26-36. [21] Artzner P, Delbaen F, Eber J M, et al. Coherent measures of risk[J]. Mathematical Finance, 1999, 9(3): 203-228. [22] Rockafellar R T, Uryasev S. Conditional value-at-risk for general loss distributions[J]. Journal of Banking & Finance, 2002, 26(7): 1443-1471. [24] Barndorff-Nielsen O, Kinnebrock S, Shephard N. Measuring downside risk-realised semivariance[R]. Oxford Financial Research Centre, 2008. [24] 余白敏,吴卫星.基于“已实现”波动率ARFI模型和CAViaR模型的VaR预测比较研究[J].中国管理科学,2015,23(2):50-58. [25] Brechmann E C. Truncated and simplified regular vines and their applications[D]. Diploma Thesis, Technische Universitat Miinchen, 2010. [26] McNeil A, Frey R. Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach[J]. Journal of Empirical Finance, 2000, 7(3): 271-300. [27] Ma F, Wei Y, Chen W, et al. Forecasting the volatility of crude oil futures using high-frequency data: further evidence[J]. Empirical Economics, 2018, 55(2): 653-678. |