[1] 邹长亮.复杂数据统计过程的若干研究[J].中国科学:数学,2013,43(08):8-17. [2] 薛丽.可变抽样区间的多变量自相关过程VAR控制图[J].运筹与管理,2020,29(12):5-11. [3] 杨梓樱,濮晓龙,徐嘉辉.基于控制过度遗漏发现概率的高维数据流异常诊断[J].数理统计与管理,2020,39(03):495-510. [4] Zou C. Multivariate statistical process control using LASSO[J]. Journal of the American Statistical Association, 2009, 104(488): 1586-1596. [5] Wang K , Jiang W. High dimensional process monitoring and fault isolation via variable selection[J]. Journal of Quality Technology, 2009, 41(3): 247-258. [6] Wang K, Jiang W, Li B. A spatial variable selection method for monitoring product surface[J]. International Journal of Production Research, 2016, 54(13-14): 1-21. [7] Fernanda A, Fogliatto F S. Variable selection methods in multivariate statistical process control: a systematic literature review[J]. Computers & Industrial Engineering, 2018, 115: 603-619. [8] Jiang W, Wang K, Tsung F. A variable-selection-based multivariate EWMA chart for process monitoring and diagnosis[J]. Journal of Quality Technology, 2012, 44(3): 209-230. [9] Nishimura K, Matsuura S, Suzuki H. Multivariate EWMA control chart based on a variable selection using AIC for multivariate statistical process monitoring[J]. Statistics & Probability Letters, 2015, 104: 7-13. [10] Abdella G M, Al-Khalifa K N, Kim S, et al. Variable selection-based multivariate cumulative sum control chart[J]. Quality and Reliability Engineering, 2016, 33(3): 565-578. [11] Liang W, Xiang D, Pu X. A robust multivariate EWMA control chart for detecting sparse mean shifts[J]. Journal of Quality Technology, 2016, 48(3): 265-283. [12] Li W, Pu X, Tsung F, Xiang D. A robust self-starting spatial rank multivariate EWMA chart based on forward variable selection[J]. Computers & Industrial Engineering, 2017, 103: 116-130. [13] 陆永婷,李艳婷.针对发动机平面度的二维Fused LASSO多元统计控制图[J].工业工程,2015,18(3):127-133. |