[1] PEREZ-GONZALEZ P, FRAMINAN J M. A common framework and taxonomy for multicriteria scheduling problems with interfering and competing jobs: Multi-agent scheduling problems[J]. Journal of Operational Research, 2014, 235(1): 1-16. [2] YIN Y Q, CHENG S R, CHENG T C E, et al. Just-in-time scheduling with two competing agents on unrelated parallel machines[J]. Omega, 2016, 63(Sep.): 41-47. [3] CURIEL I, PEDERZOLI G, TIJS S. Sequencing games[J]. European Journal of Operational Research, 1989,40(3): 344-351. [4] HAMERS H, BORM P, TIJS S. On games corresponding to sequencing situations with ready times[J]. Mathematical Programming, 1995, 69(1): 471-483. [5] LI F, YANG Y. Cooperation in a single-machine scheduling problem with job deterioration[C]//The 2016 IEEE Information Technology, Networking, Electronic and Automation Control Conference. Chongqing:IEEE, 2016: 20-22. [6] YANG G J, SUN H, UETZ M. Cooperative sequencing games with position-dependent learning effect[J]. Operations Research Letters, 2020, 48(4): 428-434. [7] 周意元,张强,王利明,等.具有学习效应的排序对策[J].运筹与管理,2018,27(1):49-52. [8] BORM P, FIESTRAS J G, HAMERS H, et al. On the convexity of games corresponding to sequencing situations with due dates[J]. European Journal of Operational Research, 2002, 136(3): 616-634. [9] ZHOU Y P, GU X S.One machine sequencing game with lateness penalties[J]. International Journal on Information, 2012, 15(11): 4429-4434. [10] SLIKKER M. Balancedness of sequencing games with multiple parallel machines[J]. Annals of Operations Research, 2005, 137(1): 177-189. [11] CURIEL I. Compensation rules for multi-stage sequencing games[J]. Annals Operations Research, 2015, 225(1):65-82. [12] 周艳平,顾幸生.一类流水车间调度问题的合作博弈[J].化工学报,2010,61(8):1983-1987. [13] 孙文娟,宫华,许可,等.带有交货期的比例流水车间调度问题的合作博弈[J].控制与决策,2022,37(3):712-720. [14] CALLEJA P, ESTÉVEZ-FERNÁNDEZ A, BORM P, et al. Job scheduling, cooperation, and control[J]. Operations Research Letters, 2006, 34(1): 22-28. [15] 赵晓丽.多代理生产调度问题的理论研究[D] .沈阳:东北大学,2015:110-121. |