[1] WANG X, YU F, PEDRYCZ W, et al. Clustering of interval-valued time series of unequal length based on improved dynamic time warping[J]. Expert Systems with Applications, 2019, 125: 293-304. [2] KAMDERN J S, BABEL G K, CARLOS O. S-ARMA model and Wold decomposition for covariance stationary interval-valued time series processes[J]. New Mathematics and Natural Computation, 2021, 17(1): 191-213. [3] HAJEK P, FROELICH W, PROCHAZKA O. Intuitionistic fuzzy grey cognitive maps for forecasting interval-valued time series[J]. Neurocomputing, 2020, 400: 173-185. [4] MACIEL L, BALLINI R. A fuzzy inference system modeling approach for interval-valued symbolic data forecasting[J]. Knowledge-Based Systems, 2019, 164: 139-149. [5] WANG Z C, CHEN L R, ZHU J, et al. Double decomposition and optimal combination ensemble learning approach for interval-valued AQI forecasting using streaming data[J]. Environmental Science and Pollution Research, 2020, 27(13): 37802-37817. [6] NETO L E A, CARVALHO F A T. Center and range method for fitting a linear regression model to symbolic interval data[J]. Computational Statistics and Data Analysis, 2008, 52(3): 1500-1515. [7] MAIA A L S, CARVALHO F, LUDERMIR T B. Forecasting models for interval-valued time series[J]. Neurocomputing, 2008, 71(16-18): 3344-3352. [8] HAN A, HONG Y M, WANG S Y, et al. A vector autoregressive moving average model for interval-valued time series data[J]. Advances in Econometrics, 2016, 36: 417-460. [9] 杨威,韩艾,汪寿阳.基于区间型数据的金融时间序列预测研究[J].系统工程学报,2016,31(6):816-830. [10] 常琳,孙静,方兴.季节性ARIMA模型在疑似预防接种异常反应报告趋势预测中的应用[J].中国卫生统计,2021,38(2):241-242,246. [11] 王志坚,王斌会.一种改进的时间序列IO型异常值检测法[J].统计与决策,2014,22:4-6. [12] WAHID A, ANNAVARAPU C. NaNOD: A natural neighbour-based outlier detection algorithm[J]. Neural Computing and Applications, 2021, 33: 2107-2123. [13] DEPURU S S S R, WANG L F, DEVABHAKTUNI V, et al. High performance computing for detection of electricity theft[J]. International Journal of Electrical Power & Energy Systems, 2013, 47: 21-30. [14] 中国人民银行调查统计司.时间序列X-12-ARIMA季节调整:原理与方法[M].北京:中国金融出版社,2006. |