[1] SAATY T L. The Analytic Hierarchy Process[M]. New York: McGraw-Hill, 1980. [2] 马维野.一种检验判断矩阵次序一致的实用方法[J].系统工程理论与实践,1996,10(11): 103-105. [3] 魏翠萍.一种检验判断矩阵次序一致性的方法[J].运筹学学报,2006(1): 116-122. [4] SIRAJ S, MIKHAILOV L, KEANE J. A heuristic method to rectify intransitive judgments in pairwise comparison matrices[J]. European Journal of Operational Research, 2012, 216(2): 420428. [5] 解江,吴诗辉.基于基本回路修正的AHP一致性调整方法研究[J].运筹与管理,2020,29(4): 147-157. [6] 吴志彬,涂见成,徐玖平.处理判断矩阵次序一致性和基数一致性的优化方法[J].系统工程理论与实践,2021,41(5): 1107-1118. [7] WU Z B, TU J C. Managing transitivity and consistency of preferences in AHP group decision making based on minimum modifications[J]. Information Fusion, 2021, 67: 125-135. [8] AGUARON J, ESCOBAR M T, JMORENO-JIMENEZ J M. Reducing inconsistency measured by the geometric consistency index in the analytic hierarchy process[J]. European Journal of Operational Research, 2021, 288(2): 576-583. [9] 徐迎军,尹世久,陈默,等.互反判断矩阵一致性指标研究[J].运筹与管理,2020,29(3): 117-124. [10] ERGU D, KOU G, PENG Y, et al. A simple method to improve the consistency ratio of the pair-wise comparison matrix in ANP[J]. European Journal of Operational Research, 2011, 213(1): 246-259. [11] GIRSANG A S, TSAI C W, YANG C S. Ant algorithm for modifying an inconsistent pairwise weighting matrix in an analytic hierarchy process[J]. Neural Computing and Applications, 2015, 26(2): 313-327. [12] LIU F, ZHANG J W, ZOU S C. A decision making model based on the leading principal submatrices of a reciprocal preference relation[J]. Applied Soft Computing, 2020, 94: 106448. [13] LIU F, ZHANG J W, ZHANG W G. Decision making with a sequential modeling of pairwise comparison process[J]. Knowledge-Based Systems, 2020, 195: 105642. [14] 朱建军,王梦光,刘士新.AHP判断矩阵一致性改进的若干问题研究[J].系统工程理论与实践,2007,27(1): 90-94. [15] BENITEZ J, DELGADO-GALVAN X, IZQUI-ERDO J, et al. Improving consistency in AHP decision-making processes[J]. Applied Mathematics and Computation, 2012, 219(5): 2432-2441. |