[1] Fleischmann M, Beullens P, Bloemhof-Ruwaard J M, Van Wassenhove L N. The impact of product recovery on logistics network design[J]. Production and Operations Management, 2001, 10(2): 156-173. [2] Nagurney A, Dong J, Zhang D. A supply chain network equilibrium model[J]. Transportation Research, 2002, 38(2): 281-303. [3] Nagurney A, Fuminori T. Reverse supply chain management and electronic waste recycling: a multitiered network equilibrium framework for e-cycling[J]. Transportation Research Part E, 2005, 41(5): 1-28. [4] Nagurney A, Cruz J, Dong J, Zhang D. Supply chain networks, electronic commerce, and supply side and demand side risk[J]. European Journal of Operational Research, 2005, 164(1): 120-142. [5] Uster H, Easwaran G, Akcali E, Cetinkaya S. Benders decomposition with Alternative Multiple Cuts for a Multi-Product Closed-Loop Supply Chain Network Design Model[J]. Naval Research Logistics, 2007, 54(8): 890-907. [6] Hammond D, Beullens P. Closed-loop supply chain network equilibrium under legislation[J]. European Journal of Operational Research, 2007, 183(2): 895-908. [7] Yang G F, Wang Z P, Li X Q. The optimization of the closed-loop supply chain network [J]. Transportation Research Part E, 2009, 45(1): 16-28. [8] 王文宾,达庆利,胡天兵,杨广芬.基于惩罚与补贴的再制造闭环供应链网络均衡模型[J].运筹与管理,2011,19(1):66-72. [9] Dong J, Zhang D, Nagrney A. A supply chain network equilibrium model with random demands[J]. European Journal of Operational Research, 2004, 156(9): 194-212. [10] 刘诚,李伟,瞿攀.随机需求条件下闭环供应链网络均衡[J].系统工程,2008,26(8):11-16. [11] 杨玉香,周根贵.闭环供应链网络设施竞争选址模型研究[J].中国管理科学,2011,19(5):50-57. [12] 杨玉香,周根贵.随机需求下闭环供应链网络设施竞争选址模型研究[J].控制与决策,2011,26(10):1553-1561. [13] 李学迁,吴勤旻,朱道立.具有随机需求的多商品流闭环供应链均衡模型[J].系统工程,2011,29(10):51-57. [14] Kanzowt C, Jiang H. A continuation method for strongly monotone variational inequalities[J]. Math Programming, 1998, 18(1): 103-126. [15] Luo Z Q, Pang J S, Ralph D. Mathematical programs with equilibrium constraints[M] Cambridge University Press, 1996. [16] Taji K, Fukushima M, Lbaraki, T. A globally convergent Newton method for solving strongly monotone variational inequalities[J]. Math Programming, 1993, 58(3): 369-383. [17] Jeyakumar V, Srisatkunrajah S, Huy N Q. Kuhn-Tucker sufficiency for global minimum of multi-extremal mathematical programming problems[J]. Journal of Mathematical Analysis and Applications, 2007, 335(2): 779-788. [18] Meng Q, Huang Y K, Cheu R L. A note on supply chain network equilibrium models[J]. Transportation Research Part E, 2007, 43(1): 60-71. |