Operations Research and Management Science ›› 2014, Vol. 23 ›› Issue (3): 30-37.

Previous Articles     Next Articles

Similar Kruskal-based Hybrid Particle Swarm Optimization Algorithm for Traveling Salesman Problem

WANG Chao1,2, JIN Chun1, HAN Qing-ping3   

  1. 1. Institute of Systems Engineering, Dalian University of Technology, Dalian 116024, China;
    2. School of Software, Dalian Jiaotong University, Dalian 116052;
    3. Faculty of Information Technology & Operations Management, Florida Atlantic University, FL 33431, USA
  • Received:2013-01-09 Online:2014-03-25

求解旅行商问题的基于类Kruskal的混合粒子群算法

王超1,2, 金淳1, 韩庆平3   

  1. 1.大连理工大学 系统工程研究所,辽宁 大连 116024;
    2.大连交通大学 软件学院,辽宁 大连 116052;
    3.美国佛罗里达大西洋大学 信息技术及运作管理系,FL 33431, USA
  • 作者简介:王超(1974-),女,辽宁大连人,博士研究生,副教授,研究方向:算法分析及设计,物流及供应链管理;金淳(1963-),男,辽宁大连人,博士,教授,博士生导师,主要研究方向:物流与供应链管理、系统仿真与优化。
  • 基金资助:
    国家自然科学基金资助项目(71271041)

Abstract: This paper proposes a hybrid particle swarm optimization algorithm called SKHPSO to solve traveling salesman problem(TSP)by overcoming the premature convergence and low search efficiency of the standard particle swarm optimization algorithm(PSO). SKHPSO uses a similar Kruskal-based algorithm by which a specific means of implementation for Greedy Heuristic is given to get an initial feasible solution,as a member of the population in the PSO, then SKHPSO carries out the heuristic search with hybrid PSO algorithm combining the local search based on Lin-Kernighan local neighbor search operation and the global search, such as cross and replacement operations in single individual, which is used in genetic algorithm. The instances in the standard library, TSPLIB, are tested to verify our proposed algorithm. The results have shown that SKHPSO is effective to enhance the quality and efficiency of the solution.

Key words: operations research, hybrid particle swarm optimization, Kruskal, greedy heuristic, Lin-Kernighan, traveling salesman problem

摘要: 本文针对求解旅行商问题的标准粒子群算法所存在的早熟和低效的问题,提出一种基于Greedy Heuristic的初始解与粒子群相结合的混合粒子群算法(SKHPSO)。该算法通过本文给出的类Kruskal算法作为Greedy Heuristic的具体实现手段,产生一个较优的初始可行解,作为粒子群中的一员,然后再用改进的混合粒子群算法进行启发式搜索。SKHPSO的局部搜索借鉴了Lin-Kernighan邻域搜索,而全局搜索结合了遗传算法中的交叉及置换操作。应用该算法对TSPLIB中的典型算例进行了算法测试分析,结果表明:SKHPSO可明显提高求解的质量和效率。

关键词: 运筹学, 混合粒子群算法, Kruskal, Greedy Heuristic, Lin-Kernighan, 旅行商问题

CLC Number: