Operations Research and Management Science ›› 2015, Vol. 24 ›› Issue (1): 81-88.DOI: 10.12005/orms.2015.0011

• Theory Analysis and Methodology Study • Previous Articles     Next Articles

Exponential Penalty Function Method for Generalized Nash Equilibrium Problem

XU Ji-xiang1,2, HOU Jian1,3, TAN Yan-hua4, FENG En-min1   

  1. 1.School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China;
    2.School of Sciences, Tianjin University of Technology and Education, Tianjin 300222, China;
    3.Management College, Inner Mongolia University of Technology, Hohhot 010051, China;
    4.School of Sciences, Hebei University of Technology, Tianjin 300130, China
  • Received:2013-01-08 Online:2015-02-12

求解广义纳什均衡问题的指数型惩罚函数方法

许吉祥1,2, 侯剑1,3, 谭彦华4, 冯恩民1   

  1. 1.大连理工大学 数学科学学院,辽宁 大连 116024;
    2.天津职业技术师范大学 理学院,天津 300222;
    3.内蒙古工业大学 管理学院,内蒙古 呼和浩特 010051;
    4.河北工业大学 理学院,天津 300130
  • 作者简介:许吉祥(1982-),男,博士,助教。
  • 基金资助:
    863项目(2007AA02Z208);973项目(2007CB714304);国家自然科学基金项目(10871033,11171050)

Abstract: This paper reformulates the generalized Nash equilibrium problem(GNEP)as a sequence of smoothing penalized NEPs by means of a partial penalization of the coupling constraints where the exponential penalty functions are used. We demonstrate that the limit point is a solution to the GNEP under the EMFCQ at a limit point of solutions to smoothing penalized NEPs. Further more, we formulate the Karush-Kuhn-Tucker(KKT)conditions for smoothing penalized NEPs into a system of nonsmooth equations, and then apply the semismooth Newton method with Armijo line search to solve the system. Finally, the numerical results show that our exponential penalty function method for GNEP is effective.

Key words: operational research, the exponential penalty function, semismooth Newton method, generalized Nash equilibrium problem

摘要: 本文利用指数型惩罚函数部分地惩罚耦合约束,从而将广义纳什均衡问题(GNEP)的求解转化为求解一系列光滑的惩罚纳什均衡问题 (NEP)。我们证明了若光滑的惩罚NEP序列的解序列的聚点处EMFCQ成立,则此聚点是 GNEP的一个解。进一步,我们把惩罚 NEP的KKT条件转化为一个非光滑方程系统,然后应用带有 Armijo 线搜索的半光滑牛顿法来求解此系统。最后,数值结果表明我们的指数型惩罚函数方法是有效的。

关键词: 运筹学, 指数型惩罚函数, 半光滑牛顿法, 广义纳什均衡

CLC Number: