[1] Debreu G. A social equilibrium existence theorem[J]. Proceedings of the National Academy of Sciences, 1952, 38: 886-893. [2] Rosen J B. Existence and uniqueness of equilibrium points for concave n-person games[J]. Econometrica, 1965, 33: 520-534. [3] Harker P T. Generalized nash games and quasi-variational inequalities[J]. European Journal of Operational Research, 1991, 54: 81-94. [4] Facchinei F, Kanzow C. Generalized nash equilibrium problems[J]. Annals of Operations Research, 2010, 175: 177-211. [5] Krawczyk J. Numerical solutions to coupled-constraint(or generalised Nash)equilibrium problems[J]. Computational Management Science, 2007, 4: 183-204. [6] Cominetti R, Facchinei F, Lasserre J B. Modern optimization modelling techniques[M]. New York: Birkhuser, 2012. 151-188. [7] Fukushima M, Pang J S. Quasi-variational inequalities, generalized nash equilibria, and multi-leader-follower games[J]. Computational Management Science, 2005, 2: 21-56. [8] Hou J, Lai J F. A penalty approach for generalized nash equilibrium problem[J]. Communications In Mathematical Research, 2012, 28: 181-192. [9] Clarke F H. Optimization and nonsmooth analysis[M]. New York: John Wiley, 1983. [10] Mifflin R. Semismooth and semiconvex functions in constrained optimization[J]. SIAM Journal on Control and Optimization, 1977, 15: 959-972. [11] Qi L, Sun J. A nonsmooth version of newton’s method[J]. Mathematical Programming, Ser.A, 1993, 58: 353-368. [12] Rockafellar R T, Wets R J B. Variational analysis[M]. Springer, 1998. [13] Luca T D, Facchinei F, Kanzow C. A semismooth equation approach to the solution of nonlinear complementarity problems[J]. Mathematical Programming, 1996, 75: 407-439. [14] Hou J, Zhang L W. A barrier function method for generalized Nash equilibrium problems[J]. Journal of Industrial and Management Optimization, 2014, 10: 1091-1108. [15] Kesselman A, Leonardi S, Bonifaci V. Game-theoretic analysis of internet switching with selfish users[A]. Deng X T, Ye Y Y. Lecture Notes in Computer Science[C]. Springer, 2005, 3828: 236-245. [16] Facchinei F, Kanzow C. Penalty methods for the solution of generalized nash equilibrium problems[J]. SIAM Journal on Optimization, 2010, 20: 2228-2253. [17] Contreras J, Klusch M, Krawczyk J B. Numerical solutions to nash-cournot equilibria in coupled constraint electricity markets[J]. IEEE Transactions on Power Systems, 2004, 19: 195-206. |