1. School of Management, Shanghai University, Shanghai 200444, China; 2. School of Basic Courses, Ningbo University of Finance and Economics, Ningbo 315175, China
[1] LI D L, SHAN E F. Efficient quotient extensions of the Myerson value[J]. Annals of Operations Research, 2020, 292: 171-181. [2] SHAPLEY L S. A value for n-person games[C]//TUCKER A W, KUHN H W. Contributions to the Theory of Games II. Princeton: Princeton University Press, 1953: 307-317. [3] BANZHAF J F. Weighted voting does not work: A mathematical analysis[J]. Rutgers Law Review, 1965, 19: 317-343. [4] OWEN G. Multilinear extensions and the Banzhaf value[J]. Naval Research Logistic Quarterly, 1975: 741-750. [5] AUMANN R J, DRÉZE J. Cooperative games with coalition structures[J]. International Journal of Game Theory, 1974, 3: 217-237. [6] OWEN G. Values of games with a priori unions[C]//HENN R, MOESCHLIN O. Mathematical Economics and Game Theory. Berlin, Heidelberg: Springer, 1977: 76-88. [7] OWEN G. Characterization of the Banzhaf-coleman index[J]. SIAM Journal on Applied Mathematics, 1978, 35(2): 315-327. [8] KAMIJO Y. A two-step Shapley value for cooperative games with coalition structures[J]. International Game Theory Review, 2009, 11(2): 207-214. [9] KAMIJO Y. The collective value: A new solution for games with coalition structures[J]. TOP, 2013, 21(3): 572-589. [10] HAIMANKO O. Composition independence in compound games: A characterization of the Banzhaf power index and the Banzhaf value[J]. International Journal of Game Theory, 2019, 48: 755-768. [11] 吕文蓉,单而芳.具有超图合作结构的Banzhaf值[J/OL].运筹学学报, 1-10[2023-03-04].http://kns.cnki.net/kcms/detail/31.1732.O1.20211014.1007.002.html. [12] SAAVEDRA-NIEVES A, FIESTRAS-JANEIRO M G. Sampling methods to estimate the Banzhaf-Owen value[J]. Annals of Operations Research, 2020 (3): 1-25. [13] TAN C, FENG W, HAN W. On the Banzhaf-like value for cooperative games with interval payoffs[J]. Mathematics, 2020, 8(3): 372. [14] 单而芳,史纪磊,吕文蓉,等.具有图限制通信结构对策的有效Owen值[J].中国科学:数学,2020,50(9):1219-1232.