[1] Chun H, Kim J W, Morck R, Yeung B. Creative destruction and firm-specific performance heterogeneity[J]. Journal of Financial Economics, 2008, 89: 109-135. [2] 郑伟华.新常态下企业经营绩效的大分化:要素驱动还是全要素驱动——基于“中国企业-员工匹配调查”的实证分析[J].宏观质量研究,2017,(1):21-34. [3] Houthoofd N, Desmidt S, Fidalgo E G. Analyzing firm performance heterogeneity: the relative effect of business domain[J]. Management Decision, 2010, 48(6): 996-1009. [4] Storbacka K, Nenonen S. Customer relationships and the heterogeneity of firm performance[J]. Journal of Business & Industrial Marketing, 2009, 24(5/6): 360-372. [5] 程虹,陈川,李唐.速度型盈利模式与质量型盈利模式——对企业经营绩效异质性的实证解释[J].南方经济,2016,(6):18-37. [6] Chaddad F R, Mondelli M P. Sources of firm performance differences in the US food economy[J]. Journal of Agricultural Economics, 2013, 64(2): 382-404. [7] 陈立敏,王小瑕.国际化与绩效提升:基于Meta整合与Meta回归两种方法的研究[J].世界经济,2017,(2):101-126. [8] Fan J, Lv J, Qi L. Sparse high-dimensional models in economics[J]. Annual Review of Economics, 2011, 3(1):291-317. [9] 朱建平,张悦涵.大数据时代对传统统计学变革的思考[J].统计研究,2016,(2):3-9. [10] Song Y G, Cao Q L, Zhang C. Towards a new approach to predict business performance using machine learning[J]. Cognitive Systems Research, 2018, 52: 1004-1012. [11] Jin X, Wang J, Chu T S, Xia J H. Knowledge source strategy and enterprise innovation performance: dynamic analysis based on machine learning[J]. Technology Analysis & Strategic Management, 2018, 30(1): 71-83. [12] Heckerman D, Geiger D, Chickering D M. Learning bayesian networks; the combination of knowledge and statistical data[J]. Machine Learning, 1995, 20(3); 197-243. [13] Tsamardinos I, Brown L E, Aliferis C F. The max-min hill-climbing bayesian network structure learning algorithm[J]. Machine Learning, 2006, 65(1): 31-78. |