[1] Goldberg D, Nichols D, Oki B M, Terry D. Using collaborative filtering to weave an informationtapestry[J]. Communications of the ACM, 1992, 35(12): 61-70. [2] Konstan J A, Miller B N, Maltz D, Herlocker J L, Gordon L R, Riedl J. GroupLens: applying collaborative filtering to usenet news[J]. Communications of the ACM, 1997, 40(3): 77-87. [3] 李改,李磊.基于矩阵分解的协同过滤算法[J].计算机工程与应用,2011,47(30):4-7. [4] 林栢全,肖菁.基于矩阵分解与随机森林的多准则推荐算法[J].华南师范大学学报(自然科学版),2019,51(02):117-122. [5] Nilashi Mehrbakhsh, Ibrahim Othman Bin, Ithnin Norafida. Multi-criteria collaborative filtering with high accuracy using higher order singular value decomposition and neuro fuzzy system[J]. Knowledge-Based Systems, 2014, 60(Apr.): 82-101. [6] 李征,段垒.基于用户兴趣评分填充的改进混合推荐方法[J].工程科学与技术,2019, 51(01):189-196. [7] 袁卫华,王红,杜向华.结合非负矩阵填充及子集划分的协同推荐算法[J].小型微型计算机系统,2017,38(12):2645-2651. [8] 赵文涛,任行学.融合标签信息和时间效应的矩阵分解推荐算法[J].信息与控制,2020,49(04):472-477. [9] Zhang JiaDong, ChowChiYin, XuJin. Enabling kernel-based attribute aware matrix factorization for rating prediction[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(4): 798-812. [10] Lu Qibei, GuoFeipeng. Personalized informationrecommendation model based on context contribution and item correlation[J]. Measurement, 2019, 142: 30-39. [11] Sun Nannan, Zhuang Yayun, Ni Shuqin. A trust-based collaborative filtering algorithm using a user preference clustering[J]. Management Science and Engineering, 2017, 11(3): 9-19. [12] 赖锴,王雪,杜柏翰.基于时间和聚类的协同过滤推荐策略研究[J].数学的实践与认识,2020,50(23):41-48. [13] 许智宏,田雨,闫文杰,暴利花.基于模糊聚类和改进混合蛙跳的协同过滤推荐[J].计算机应用研究,2018,35(10):2908-2911. [14] 张文,崔杨波,李健,陈进东.基于聚类矩阵近似的协同过滤推荐研究[J].运筹与管理,2020,29(04):171-178. [15] Faris A, Chandan K Reddy, HuJunling, Hatim F A. Biclustering neighborhoodbased collaborative filtering method for top-nrecommender systems[J]. Knowledge and Information Systems, 2015, 44(2): 475-491. [16] Lemire D, Maclachlan A. Slope one predictors for online rating-based collaborative filtering[C]. Proceedings of the SIAM Data Mining Conference, 2005: 471-780. [17] 赵伟,林楠,韩英,张洪涛.一种改进的K-means聚类的协同过滤算法[J].安徽大学学报(自然科学版),2016,40(02):32-36. [18] 项亮.推荐系统实践[M].北京:人民邮电出版社,2012. [19] 王巧玲,乔非,蒋友好.基于聚合距离参数的改进K-means算法[J].计算机应用,2019,39(09):2586-2590. |