运筹与管理 ›› 2025, Vol. 34 ›› Issue (4): 211-217.DOI: 10.12005/orms.2025.0132

• 应用研究 • 上一篇    下一篇

符号中心直觉模糊数排序方法及在决策中的应用

谷秋鹏1, 刘增良2, 李安楠3   

  1. 1.潍坊学院 数学与信息科学学院,山东 潍坊 261061;
    2.北京理工大学 管理与经济学院,北京 100081;
    3.北京财贸职业学院 基础教育学院(体育部),北京 101126
  • 收稿日期:2021-05-19 发布日期:2025-07-31
  • 通讯作者: 李安楠(1981-),女,山东聊城人,研究方向:运筹与管理。Email: annanli1981@163.com
  • 作者简介:谷秋鹏(1978-),女,山东冠县人,研究方向:决策分析,模糊集理论与应用
  • 基金资助:
    国家自然科学基金资助项目(71801174)

Intuitionistic Fuzzy Number Ranking Method Based on Sign Center and its Application in Decision Making

GU Qiupeng1, LIU Zengliang2, LI Annan3   

  1. 1. School of Mathematics and Information Science, Weifang University, Weifang 261061, China;
    2. School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China;
    3. School of Basic Education (Physical Education Department), Beijing College of Finance and Commerce, Beijing 101126, China
  • Received:2021-05-19 Published:2025-07-31

摘要: 在直觉模糊数排序理论中,当犹豫度为零时往往出现排序指标不适用的情况。针对这种情况,本文定义了隶属下限模糊数和隶属上限模糊数,在考虑决策者偏好态度的基础上,构造了直觉模糊数的中心。通过引入符号函数,建立了同时适用于模糊正数和模糊负数的符号中心排序指标,依据排序指标值越大直觉模糊数越大的原则对直觉模糊数排序。排序指标建立的原则是保证直觉模糊数退化为模糊数时,直觉模糊数的排序指标退化为模糊数的排序指标,最后,通过选址实例说明符号中心直觉模糊数排序方法的现实应用价值。

关键词: 符号中心, 直觉模糊数, 排序

Abstract: Intuitionistic fuzzy numbers (IFN), characterized by membership, non-membership, and hesitation degree have become pivotal in uncertain decision-making. However, existing ranking methods face critical limitations when hesitation degrees vanish (i.e., degenerate to fuzzy numbers) or when compared with negative-domain IFN. This study addresses these gaps by developing a unified ranking framework that maintains consistency with classical fuzzy number ranking principles while incorporating decision-maker attitudes.
We define subordinate lower fuzzy numbers and subordinate upper fuzzy numbers to bound the membership range of IFN. A preference-weighted centroid (x0(A~),y0(A~)) is formulated, where: x0 integrates geometric centers of subordinate bounds, y0 combines membership strength and hesitation through an attitude parameter α∈[0,1]. A sign function Ix0 resolves ambiguity in positive/negative IFN comparisons. The ranking index R(A~)=Ix0·x20+y20 ensures: compatibility with fuzzy number ranking when π<sub>A~=0; attitudinal flexibility via α-weighting (pessimistic: α<0.5; neutral: α=0.5; optimistic: α>0.5). For trapezoidal/triangular IFN, closed-form centroid formulas prove that R(A~) degenerates to fuzzy centroid index (WANG and LEE, 2008) when π<sub>A~=0.
Four comparative cases demonstrate the resolution of both counterintuitive rankings for negative IFN and attitude-driven outcome variations while maintaining transitivity. In selecting India's aerospace research center, weighted aggregation of trapezoidal IFN yields robustranking 5>1>2>4>3, aligning with benchmark methods still offering explicit preference interpretation.
The proposed method overcomes the three limitations: hesitation-induced ranking failure, sign ignorance in distance metrics, rigidity to decision-maker attitudes. Future work may extend this framework to interval type-2 fuzzy sets and dynamic multi-period decision environments.

Key words: sign center, intuitionistic fuzzy number, ranking

中图分类号: