[1] Nagurney A. Network economics: a variational approach, second and revised edition[M]. Kluwer Academic publisher, Dordrecht, The Netherlands, 1999. [2] Nagurney A, Dong J, Zhang D. A supply chain network equilibrium model[J]. Transportation Research:Part E, 2002, 38(5): 281-303. [3] Dong J, Zhang D, Yan H, Nagurney A. Multi-tired supply chain networks: multi-criteria decision making under uncertainty[J]. Annals of Operations Research, 2005 ,135: 155-178. [4] Cheng T C E, Wu Y N. A multiproduct, multicriterion supply chain-demand network equilibrium model[J]. Operations Research, 2006, 54(3): 544-554. [5] 徐兵,朱道立.产品随机选择下多商品流供应链网络均衡模型研究[J].系统工程理论与实践,2007,3:82-90. [6] 滕春贤,姚锋敏,胡宪武.具有随机需求的多商品流供应链网络均衡模型的研究[J].系统工程理论与实践,2007,10:77-83. [7] 滕春贤,胡引霞,周艳山.供应链网络均衡模型应对突发事件[J].系统工程理论与实践,2009,3:16-20. [8] 张铁柱,周倩.双渠道多期供应链网络均衡模型研究[J].计算机集成制造系统,2008,8:1512-1520. [9] Choi C S, Desarbo W S, Harker P T. Product positioning under price competition[J]. Management Science, 1990, 36(2): 175 -199. [10] Ryu J H, Dua V, Pistikopoulos E N. A bilevel programming framework for enterprise-wide process networks under uncertainty[J]. Computers and Chemical Engineering, 2004, 28(6-7): 1121-1129. [11] Chen X, Simchil D. Coordinating inventory control and pricing strategies with random demand and fixed ordering cost the infinite horizon case[J]. Mathematics of Operations Research, 2004, 29(3): 698-723. [12] Cachon G. Supply chain coordination with contracts[M]. Handbooks in operations research and management science: supply chain management. Dordrecht Kluwer Academic Publishers, 2003. [13] Harker P T, Pang J S. Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications[J]. Mathematical Programming, 1990, 48: 161-220. [14] Luo Z Q, Pang J S, Ralph D. Mathematical programs with equilibrium constraints[M]. Cambridge University Press, 1996. [15] Friesz T F, Cho H J, Mehta N J. A simulated annealing approach to the network design problem with variational inequality constraints[J]. Transportation Science, 1992, 26: 18-26. [16] Francisco F, Jiang HY, Qi L Q. A smoothing method for mathematical programs with equilibrium constraints[J]. Mathematical Programming, 1999, 85: 107-134. |