[1] 关菲.个性化推荐系统中协同过滤推荐算法优化研究[J].运筹与管理,2022,31(11): 9-14. [2] 张文,崔杨波,李健,等.基于聚类矩阵近似的协同过滤推荐研究[J].运筹与管理,2020,29(4):171-178. [3] KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 30-37. [4] 邓江洲,郭均鹏.基于直觉模糊集的伯努利矩阵分解推荐算法[J].控制与决策,2023,38(10):2897-2904. [5] SEDHAIN S, MENON A K, SANNER S, et al. Autorec: Autoencoders meet collaborative filtering[C]//WWW'15: 24th International World Wide Web Conference, May 18-22, 2015, Florence Italy. New York, NY, United States: Association for Computing Machinery, 2015: 111-112. [6] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//CVPR: 2016 IEEE Conference on Computer Vision and Pattern Recognition, June 27-30, 2016, Las Vegas, NV, USA. Piscataway: IEEE Xplore, 2016: 770-778. [7] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//CVPR: 2017 IEEE Conference on Computer Vision and Pattern Recognition, July 21-26, 2017, Honolulu, HI, USA. Piscataway: IEEE Xplore, 2017: 2261-2269. [8] HE X, LIAO L, HAN Z, et al. Neural collaborative filtering[C]//WWW'17: 26th International World Wide Web Conference, April 3-7, 2017, Perth, Australia. Switzerland: International World Wide Web Conferences Steering Committee, 2017: 173-182. [9] HE X, CHUA T S. Neural factorization machines for sparse predictive analytics[C]//40th International ACM SIGIR Conference on Research and Development in Information Retrieval, July 21-26, 2017, Tokyo, Japan. United States: Association for Computing Machinery, 2017: 355-364. [10] CHENG H T, KOC L, HARMSEN J, et al. Wide & deep learning for recommender systems[C]//1st Workshop on Deep Learning for Recommender Systems, September 15, 2016, Boston, USA. New York, NY, United States: Association for Computing Machinery, 2016: 7-10. [11] WANG R, FU B, FU G, et al. Deep & cross network for Ad click predictions[C]//ADKDD'17, August 13-17, 2017, Halifax, Canada. New York, NY, United States: Association for Computing Machinery, 2017: 1-7. [12] XIAO J, YE H, HE X, et al. Attentional factorization machines: learning the weight of feature interactions via attention networks[C]//26th International Joint Conference on Artificial Intelligence, August 19-25, 2017, Melbourne, Australia. CA: AAAI Press, 2017: 3119-3125. [13] ZHOU G, ZHU X, SONG C, et al. Deep interest network for click-through rate prediction[C]//24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, August 19-23, 2018, London, Britain. New York, NY, United States: Association for Computing Machinery, 2018: 1059-1068. [14] WEN P, YUAN W, QIN Q, et al. Neural attention model for recommendation based on factorization machines[J]. Applied Intelligence, 2021, 51(4): 1829-1844. [15] ZHANG B, ZHU M, YU M, et al. Extreme residual connected convolution-based collaborative filtering for document context-aware rating prediction[J]. IEEE Access, 2020, 8: 53604-53613. [16] 黄沛昱,李煜龙,高磊.改进残差神经网络的图像去雾算法[J].计算机系统应用,2022,31(8):223-229. [17] CHENG W, SHEN Y, HUANG L. Adaptive factorization network: Learning adaptive-order feature interactions[C]//AAAI Conference on Artificial Intelligence, February 7-12, 2020, New York, USA. CA: AAAI Press, 2020, 34(4): 3609-3616. |