[1] YE L, XIA Y, TAO S, et al. Reliability-aware and energy-efficient workflow scheduling in IaaS clouds[J]. IEEE Transactions on Automation Science and Engineering, 2023, 20(3): 2156-2169. [2] TANG X, CAO W, TANG H, et al. Cost-efficient workflow scheduling algorithm for applications with deadline constraint on heterogeneous clouds[J]. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(9): 2079-2092. [3] 谢毅,贺田塔,倪倩芸,等.面向能耗的云工作流调度优化[J].系统工程理论与实践,2017,37(4):1056-1071. [4] TOPCUOGLU H, HARIRI S, WU M Y. Performance-effective and low-complexity task scheduling for heterogeneous computing[J]. IEEE Transactions on Parallel and Distributed Systems, 2002, 13(3): 260-274. [5] ZHANG L, ZHOU L, SALAH A. Efficient scientific workflow scheduling for deadline-constrained parallel tasks in cloud computing environments[J]. Information Sciences, 2020, 531: 31-46. [6] 于明远,俞栋辉,叶蕾.基于改进微粒群的分布式工作流调度优化[J].系统工程理论与实践,2011,31(S2):191-196. [7] 张雪峰,杜孝平,王晓健,等.预算约束和截止时间敏感的高能效云工作流调度[J].计算机工程与设计,2022,43(10):2829-2835. [8] CHOUDHARY A, GUPTA I, SINGH V, et al. A GSA based hybrid algorithm for bi-objective workflow scheduling in cloud computing[J]. Future Generation Computer Systems, 2018, 83: 14-26. [9] STAVRINIDES G L, KARATZA H D. An energy-efficient, QoS-aware and cost-effective scheduling approach for real-time workflow applications in cloud computing systems utilizing DVFS and approximate computations[J]. Future Generation Computer Systems, 2019, 96: 216-226. [10] WEN Y, WANG Z, ZHANG Y, et al. Energy and cost aware scheduling with batch processing for instance-intensive loT workflows in clouds[J]. Future Generation Computer Systems, 2019, 101: 39-50. [11] 张宇.融合遗传和粒子群算法的云工作流调度算法[J].计算机工程与设计,2021,42(10):2867-2875. [12] ROPKE S, PISINGER D. An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows[J]. Transportation Science, 2006, 40(4): 455-472. [13] GULLHAV A N, CORDEAU J F, HVATTUM L M, et al. Adaptive large neighborhood search heuristics for multi-tier service deployment problems in clouds[J]. European Journal of Operational Research, 2017, 259(3): 829-846. [14] 李泉林,段灿,鄂成国,等.云资源提供商的合作博弈模型与收益分配研究[J].运筹与管理,2014,23(4):274-279. [15] MASMOUDI O, DELORME X, GIANESSI P. Job-shop scheduling problem with energy consideration[J]. International Journal of Production Economics, 2019, 216: 12-22. [16] BHARATHI S, CHERVENAK A, DEELMAN E, et al. Characterization of scientific workflows[C]//2008 Third Workshop on Workflows in Support of Large-Scale Science, November 17-17, 2008, Austin, TX, USA. New York: IEEE, 2008: 4723958. [17] JUVE G, CHERVENAK A, DEELMAN E, et al. Characterizing and profiling scientific workflows[J]. Future Generation Computer Systems, 2013, 29(3): 682-692. [18] ARABNEJAD V, BUBENDORFER K, NG B. Budget and deadline aware e-science workflow scheduling in clouds[J]. IEEE Transactions on Parallel and Distributed Systems, 2018, 30(1): 29-44. |