[1] Zadeh L A. Fuzzy sets[J]. Information and Control, 1965, 8(13): 338-356. [2] Zadeh L A. The concept of a linguistic variable and its application to approximate reasoning—I[J]. Information Sciences, 1975, 8(3): 199-249. [3] Mendel J M, John R I, Liu F. Interval type-2 fuzzy logic systems made simple[J]. IEEE Transactions on Fuzzy Systems, 2006, 14: 808-821. [4] Dhar S, Kundu M K. A novel method for image thresholding using interval type-2 fuzzy set and bat algorithm[J]. Applied Soft Computing, 2018, 63: 154-166. [5] Abdullah L, Zulkifli N. Integration of fuzzy AHP and interval type-2 fuzzy DEMATEL: an application to human resource management[J]. Expert Systems with Applications, 2015, 42(9): 4397-4409. [6] Kili M, Kaya I. Investment project evaluation by a decision making methodology based on type-2 fuzzy sets[J]. Applied Soft Computing, 2015, 27: 399-410. [7] Qin J D, Liu X W, Pedryczc W. An extended TODIM multi-criteria group decision making method for green supplier selection in interval type-2 fuzzy environment[J]. European Journal of Operational Research, 2017, 258(2): 626-638. [8] Hesamian G. Measuring similarity and ordering based on interval type-2 fuzzy numbers[J]. IEEE Transactions on Fuzzy Systems, 2017, 25(4): 788-798. [9] Zarinbal M, Fazel Zarandi M H, Turksen I B. Interval type-2 relative entropy fuzzy c-means clustering[J]. InformationSciences, 2014, 272: 49-72. [10] Qin J D, Liu X W, Pedrycz W. An extended VIKOR method based on prospect theory for multiple attribute decision making under interval type-2 fuzzy environment[J]. Knowledge-Based Systems, 2015, 86: 116-130. [11] Baykasogˇlu A, Glcük . Development of an interval type-2 fuzzy sets based hierarchical MADM model by combining DEMATEL and TOPSIS[J]. Expert Systems with Applications, 2017, 70: 37-51. [12] Chen T Y. An interval type-2 fuzzy PROMETHEE method using a likelihood-based outranking comparison approach[J]. Information Fusion, 2015, 25: 105-120. [13] Zhang Z M. Trapezoidal interval type-2 fuzzy aggregation operators and their application to multiple attribute group decision making[J]. Neural Computing & Applications, 2018, 29(4): 1039-1054. [14] Ma X Y, Wu P, Zhou L G, Chen H Y, Zheng T, Ge J Q. Approaches based on interval type-2 fuzzy aggregation operators for multiple attribute group decision making[J]. International Journal of Fuzzy Systems, 2016, 18(4): 697-715. [15] Gong Y B, Hu N, Zhang J G, Liu G F, Deng J G. Multi-attribute group decision making method based on geometric Bonferroni mean operator of trapezoidal interval type-2 fuzzy numbers[J]. Computers & Industrial Engineering, 2015, 81: 167-176. [16] Qin J D. Interval type-2 fuzzy Hamy mean operators and their application in multiple criteria decision making[J]. Granular Computing, 2017, 2(4): 249-269. [17] Chen T Y. Multiple criteria decision analysis using prioritised interval type-2 fuzzy aggregation operators and its application to site selection[J]. Technological and Economic Development of Economy, 2017, 23(1): 1-21. [18] Sugeno M. Theory of fuzzy integral and its application[D]. Tokyo:Department of Comp Intell & Syst Sci, Tokyo Institute of Technology, 1974. [19] Marichal J L. An axiomatic approach of the discrete Choquet integral as a tool to aggregate interacting criteria[J]. IEEE Transactions on Fuzzy Systems, 2000, 8(6): 800-807. [20] Joshi D, Kumar S. Interval-valued intuitionistic hesitant fuzzy Choquet integral based TOPSIS method for multi-criteria group decision making[J]. European Journal of Operational Research, 2016, 248(1): 183-191. [21] Xu Z S. Choquet integrals of weighted intuitionistic fuzzy information[J]. Information Sciences, 2010, 180: 726-736. [22] Tan C Q, Chen X H. Intuitionistic fuzzy Choquet integral operator for multi-criteria decision making[J]. Expert Systems with Applications, 2010, 37: 149-157. [23] 孟凡永, 王琛, 张艳萌.工程项目投资方案评价方法的研究-基于广义λ-Shapley Choquet积分[J].运筹与管理, 2016, 25(3):186-194. [24] Kahneman D, Tversky A. Prospect theory: an analysis of decision under risk[J]. Econometrica, 1979, 47(2): 263-291. [25] Tversky A, Kahneman D. Advances in prospect theory: cumulative representation of uncertainty[J]. Journal of Risk and Uncertainty, 1992, 5(4): 297-323. [26] 李欢, 朱建军, 张世涛.考虑双参照点累积前景理论的风险型群决策方法[J].运筹与管理, 2016, 25(3):117-124. [27] 代文锋, 仲秋雁, 齐春泽.基于前景理论和三角模糊MULTIMOORA的多阶段决策方法[J].运筹与管理, 2018, 27(3):74-80. [28] 赵萌, 秦松松, 谢佳恒, 奉冰, 李刚.考虑决策者风险偏好的区间直觉模糊多属性群决策方法[J].运筹与管理, 2018, 27(1):7-16. [29] Lee L W, Chen S M. A new method for fuzzy multiple attribute group decision-making based on the arithmetic operations of interval type-2 fuzzy sets[C]. In Proceedings of the 2008 international conference on machine learning and cybernetics, Kunming, China, 2008, 6: 3084-3089. [30] Chen S M, Lee L W. Fuzzy multiple attributes group decision-making based on the ranking values and the arithmetic operations of interval type-2 fuzzy sets[J]. Expert Systems with Applications, 2010, 37(1): 824-833. [31] Marichal J L. The influence of variables on pseudo-boolean functions with applications to game theory and multicriteria decision making[J]. Discrete Applied Mathematics, 2000, 107(1-3): 139-164. [32] Murofushi T, Sugeno M. An interpretation of fuzzy measures and the choquet integral as an integral with respect to a fuzzy measure[J]. Fuzzy Sets and Systems, 1989, 29(2): 201-227. [33] Prelec D. The probability weighting function[J]. Econometrica, 1998, 66(3): 497-527. [34] Goda K, Hong H P. Application of cumulative prospect theory: implied seismic design preference[J]. Structural Safety, 2008, 30(6): 506-516. |