运筹与管理 ›› 2020, Vol. 29 ›› Issue (8): 105-111.DOI: 10.12005/orms.2020.0206

• 理论分析与方法探讨 • 上一篇    下一篇

基于改进PSO-BP神经网络的贮存可靠性预测

宫华1, 李作华2, 刘洪涛2, 郝永平3   

  1. 1.沈阳理工大学 理学院,辽宁 沈阳 110159;
    2.辽宁华兴机电有限公司,辽宁 锦州 121017;
    3.沈阳理工大学 装备工程学院,辽宁 沈阳 110159
  • 收稿日期:2018-11-03 出版日期:2020-08-25
  • 作者简介:宫华(1976-),女,满族,辽宁本溪人,教授,博士,研究方向:可靠性预测与优化决策;李作华(1961-),男,辽宁朝阳人,研究员级高级工程师,研究方向:引信技术;刘洪涛(1975-),男,河南漯河人,高级工程师,硕士,研究方向:引信技术;郝永平(1960-),辽宁沈阳人,男,教授,博士,研究方向:智能弹药技术。
  • 基金资助:
    辽宁“百千万人才工程”资助项目(201904522);辽宁省教育厅支持项目(LG201912)

Predicting for Storage Reliability Based on Improved PSO-BP Neural Network

GONG Hua1, LI Zhuo-hua2, LIU Hong-tao2, HAO Yong-ping3   

  1. 1. School of Science, Shenyang Ligong University, Shenyang 110159, China;
    2. Liaoning Huaxing Mechanical & Electrical Co., LTD, Jinzhou 121017, China;
    3. School of Equipment Engineering Shenyang Ligong University, Shenyang 110159, China
  • Received:2018-11-03 Online:2020-08-25

摘要: 贮存可靠性是军事储备质量监测的重要环节,科学准确地预测贮存可靠度是现代化军事评估的必然要求。针对历史贮存数据,建立可靠度与年限的贮存可靠性预测模型,采用进化策略改进粒子群算法(PSO)优化BP神经网络进行贮存可靠性预测。通过数据扩充提高样本质量和数量,应用改进后的PSO算法优化BP神经网络的初始权值和阈值,提高网络的泛化能力。PSO算法较好的全局搜索能力与BP网络很强的局部搜索能力相结合,能够避免早熟现象,提高算法的收敛速度及预测精度。实验结果表明,改进的PSO-BP网络模型比PSO-BP和BP神经网络获得更好的预测性能。

关键词: 预测, 贮存可靠性, BP神经网络, 粒子群

Abstract: The storage reliability is an important part of quality monitoring in the military reserve. The scientific and accurate prediction of storage reliability is a necessary requirement for the evaluation of the modern military. For the historical storage data, a prediction model of storage reliability is derived based on period and reliability. A prediction method of storage reliability is provided where BP neural network algorithm is optimized by improved particle swarm optimization algorithm based on evolutionary strategy. Data augmentation can improve the quality and quantity of the samples. The improved PSO algorithm can optimize the initial weights and thresholds in BP neural network, and increase the generalization ability. PSO algorithm has better global search ability, and BP neural network has strong local search ability. The proposed algorithm in this paper can avoid precocious phenomena and improve its convergence speed and its prediction accuracy. The prediction results show that the improved-PSO-BP network method proposed in this paper has better prediction performance than PSO-BP and BP neural networks.

Key words: prediction, storage reliability, BP neural network, particle swarm optimization

中图分类号: